A remark on local fractional calculus and ordinary derivatives
Main Author: | |
---|---|
Publication Date: | 2016 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/16623 |
Summary: | In this short note we present a new general definition of local fractional derivative, that depends on an unknown kernel. For some appropriate choices of the kernel we obtain some known cases. We establish a relation between this new concept and ordinary differentiation. Using such formula, most of the fundamental properties of the fractional derivative can be derived directly. |
id |
RCAP_1ae400b4a64c1e2dbf3adf8219a4ad43 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/16623 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
A remark on local fractional calculus and ordinary derivativesLocal fractional derivativeConformable derivativeIn this short note we present a new general definition of local fractional derivative, that depends on an unknown kernel. For some appropriate choices of the kernel we obtain some known cases. We establish a relation between this new concept and ordinary differentiation. Using such formula, most of the fundamental properties of the fractional derivative can be derived directly.De Gruyter Open2017-01-10T11:03:40Z2016-12-01T00:00:00Z2016-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/16623eng2391-545510.1515/math-2016-0104Almeida, RicardoGuzowska, MałgorzataOdzijewicz, Tatianainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T03:59:10Zoai:ria.ua.pt:10773/16623Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:53:31.733547Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
A remark on local fractional calculus and ordinary derivatives |
title |
A remark on local fractional calculus and ordinary derivatives |
spellingShingle |
A remark on local fractional calculus and ordinary derivatives Almeida, Ricardo Local fractional derivative Conformable derivative |
title_short |
A remark on local fractional calculus and ordinary derivatives |
title_full |
A remark on local fractional calculus and ordinary derivatives |
title_fullStr |
A remark on local fractional calculus and ordinary derivatives |
title_full_unstemmed |
A remark on local fractional calculus and ordinary derivatives |
title_sort |
A remark on local fractional calculus and ordinary derivatives |
author |
Almeida, Ricardo |
author_facet |
Almeida, Ricardo Guzowska, Małgorzata Odzijewicz, Tatiana |
author_role |
author |
author2 |
Guzowska, Małgorzata Odzijewicz, Tatiana |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Almeida, Ricardo Guzowska, Małgorzata Odzijewicz, Tatiana |
dc.subject.por.fl_str_mv |
Local fractional derivative Conformable derivative |
topic |
Local fractional derivative Conformable derivative |
description |
In this short note we present a new general definition of local fractional derivative, that depends on an unknown kernel. For some appropriate choices of the kernel we obtain some known cases. We establish a relation between this new concept and ordinary differentiation. Using such formula, most of the fundamental properties of the fractional derivative can be derived directly. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12-01T00:00:00Z 2016-12 2017-01-10T11:03:40Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/16623 |
url |
http://hdl.handle.net/10773/16623 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2391-5455 10.1515/math-2016-0104 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter Open |
publisher.none.fl_str_mv |
De Gruyter Open |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594168911331328 |