A new non-conformable derivative based on Tsallis’s q- exponential function

Bibliographic Details
Main Author: Reis, Cristina de Andrade Santos
Publication Date: 2021
Other Authors: Silva Junior, Rinaldo Vieira da
Format: Article
Language: eng
Source: Revista Intermaths
Download full: https://periodicos2.uesb.br/intermaths/article/view/10101
Summary: In this paper, a new derivative of local type is proposed and some basic properties are studied. This new derivative satisfies some properties of integer-order calculus, e.g. linearity, product rule, quotient rule and the chain rule. Because Tsallis' generalized exponential function, we can extend some of the classical results, namely: Rolle's theorem, the mean-value theorem. We present the corresponding Q-integral from which new results emerge. Specifically, we generalize the inversion property of the fundamental theorem of calculus and prove a theorem associated with the classical integration by parts. Finally, we present an application involving linear differential equations by means of Q derivative.
id UESB-9_8175c378d1e3b4b1b4a299bf7c42b39e
oai_identifier_str oai:ojs.pkp.sfu.ca:article/10101
network_acronym_str UESB-9
network_name_str Revista Intermaths
repository_id_str
spelling A new non-conformable derivative based on Tsallis’s q- exponential functionA new non-conformable derivative based on Tsallis’s q- exponential functionCálculo Fracionário Derivada não compatívelFunção q-exponencialFractional calculusNon-conformable derivativeq-exponential functionIn this paper, a new derivative of local type is proposed and some basic properties are studied. This new derivative satisfies some properties of integer-order calculus, e.g. linearity, product rule, quotient rule and the chain rule. Because Tsallis' generalized exponential function, we can extend some of the classical results, namely: Rolle's theorem, the mean-value theorem. We present the corresponding Q-integral from which new results emerge. Specifically, we generalize the inversion property of the fundamental theorem of calculus and prove a theorem associated with the classical integration by parts. Finally, we present an application involving linear differential equations by means of Q derivative.Neste artigo, uma nova derivada do tipo local é proposta e algumas propriedades básicas são estudadas. Esta nova derivada satisfaz algumas propriedades do cálculo de ordem inteira, por exemplo linearidade, regra do produto, regra do quociente e a regra da cadeia. Devido à função exponencial generalizada de Tsallis, podemos estender alguns dos resultados clássicos, a saber: teorema de Rolle, teorema do valor médio. Apresentamos a correspondente Q-integral a partir da qual surgem novos resultados. Especificamente, generalizamos a propriedade de inversão do teorema fundamental do cálculo e provamos um teorema associado à integração clássica por partes. Finalmente, apresentamos uma aplicação envolvendo equações diferenciais lineares por meio da Q-derivada.Universidade Estadual do Sudoeste da Bahia2021-12-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtigo avaliado pelos Paresapplication/pdfhttps://periodicos2.uesb.br/intermaths/article/view/1010110.22481/intermaths.v2i2.10101INTERMATHS; v. 2 n. 2 (2021); 106-118INTERMATHS; Vol. 2 Núm. 2 (2021); 106-118INTERMATHS; Vol. 2 No. 2 (2021); 106-1182675-8318reponame:Revista Intermathsinstname:Universidade Estadual do Sudoeste da Bahia (UESB)instacron:UESBenghttps://periodicos2.uesb.br/intermaths/article/view/10101/6470Copyright (c) 2021 INTERMATHSinfo:eu-repo/semantics/openAccessReis, Cristina de Andrade Santos Silva Junior, Rinaldo Vieira da2025-05-13T15:05:13Zoai:ojs.pkp.sfu.ca:article/10101Revistahttps://periodicos2.uesb.br/index.php/intermaths/indexPUBhttps://periodicos2.uesb.br/index.php/intermaths/oaiintermaths@uesb.edu.br || publicacoes.digitais@uesb.edu.br2675-83182675-8318opendoar:2025-05-13T15:05:13Revista Intermaths - Universidade Estadual do Sudoeste da Bahia (UESB)false
dc.title.none.fl_str_mv A new non-conformable derivative based on Tsallis’s q- exponential function
A new non-conformable derivative based on Tsallis’s q- exponential function
title A new non-conformable derivative based on Tsallis’s q- exponential function
spellingShingle A new non-conformable derivative based on Tsallis’s q- exponential function
Reis, Cristina de Andrade Santos
Cálculo Fracionário
Derivada não compatível
Função q-exponencial
Fractional calculus
Non-conformable derivative
q-exponential function
title_short A new non-conformable derivative based on Tsallis’s q- exponential function
title_full A new non-conformable derivative based on Tsallis’s q- exponential function
title_fullStr A new non-conformable derivative based on Tsallis’s q- exponential function
title_full_unstemmed A new non-conformable derivative based on Tsallis’s q- exponential function
title_sort A new non-conformable derivative based on Tsallis’s q- exponential function
author Reis, Cristina de Andrade Santos
author_facet Reis, Cristina de Andrade Santos
Silva Junior, Rinaldo Vieira da
author_role author
author2 Silva Junior, Rinaldo Vieira da
author2_role author
dc.contributor.author.fl_str_mv Reis, Cristina de Andrade Santos
Silva Junior, Rinaldo Vieira da
dc.subject.por.fl_str_mv Cálculo Fracionário
Derivada não compatível
Função q-exponencial
Fractional calculus
Non-conformable derivative
q-exponential function
topic Cálculo Fracionário
Derivada não compatível
Função q-exponencial
Fractional calculus
Non-conformable derivative
q-exponential function
description In this paper, a new derivative of local type is proposed and some basic properties are studied. This new derivative satisfies some properties of integer-order calculus, e.g. linearity, product rule, quotient rule and the chain rule. Because Tsallis' generalized exponential function, we can extend some of the classical results, namely: Rolle's theorem, the mean-value theorem. We present the corresponding Q-integral from which new results emerge. Specifically, we generalize the inversion property of the fundamental theorem of calculus and prove a theorem associated with the classical integration by parts. Finally, we present an application involving linear differential equations by means of Q derivative.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-28
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Artigo avaliado pelos Pares
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos2.uesb.br/intermaths/article/view/10101
10.22481/intermaths.v2i2.10101
url https://periodicos2.uesb.br/intermaths/article/view/10101
identifier_str_mv 10.22481/intermaths.v2i2.10101
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://periodicos2.uesb.br/intermaths/article/view/10101/6470
dc.rights.driver.fl_str_mv Copyright (c) 2021 INTERMATHS
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2021 INTERMATHS
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual do Sudoeste da Bahia
publisher.none.fl_str_mv Universidade Estadual do Sudoeste da Bahia
dc.source.none.fl_str_mv INTERMATHS; v. 2 n. 2 (2021); 106-118
INTERMATHS; Vol. 2 Núm. 2 (2021); 106-118
INTERMATHS; Vol. 2 No. 2 (2021); 106-118
2675-8318
reponame:Revista Intermaths
instname:Universidade Estadual do Sudoeste da Bahia (UESB)
instacron:UESB
instname_str Universidade Estadual do Sudoeste da Bahia (UESB)
instacron_str UESB
institution UESB
reponame_str Revista Intermaths
collection Revista Intermaths
repository.name.fl_str_mv Revista Intermaths - Universidade Estadual do Sudoeste da Bahia (UESB)
repository.mail.fl_str_mv intermaths@uesb.edu.br || publicacoes.digitais@uesb.edu.br
_version_ 1840460155728166913