Identification of inelastic parameters based on deep drawing forming operations using a global-local hybrid Particle Swarm approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Udesc |
dARK ID: | ark:/33523/001300000kp02 |
Texto Completo: | https://repositorio.udesc.br/handle/UDESC/7607 |
Resumo: | © 2016 Académie des sciences.Application of optimization techniques to the identification of inelastic material parameters has substantially increased in recent years. The complex stress-strain paths and high nonlinearity, typical of this class of problems, require the development of robust and efficient techniques for inverse problems able to account for an irregular topography of the fitness surface. Within this framework, this work investigates the application of the gradient-based Sequential Quadratic Programming method, of the Nelder-Mead downhill simplex algorithm, of Particle Swarm Optimization (PSO), and of a global-local PSO-Nelder-Mead hybrid scheme to the identification of inelastic parameters based on a deep drawing operation. The hybrid technique has shown to be the best strategy by combining the good PSO performance to approach the global minimum basin of attraction with the efficiency demonstrated by the Nelder-Mead algorithm to obtain the minimum itself. |
id |
UDESC-2_c1d70ed3d8d6b2d9f9691a6b96039a00 |
---|---|
oai_identifier_str |
oai:repositorio.udesc.br:UDESC/7607 |
network_acronym_str |
UDESC-2 |
network_name_str |
Repositório Institucional da Udesc |
repository_id_str |
6391 |
spelling |
Identification of inelastic parameters based on deep drawing forming operations using a global-local hybrid Particle Swarm approach© 2016 Académie des sciences.Application of optimization techniques to the identification of inelastic material parameters has substantially increased in recent years. The complex stress-strain paths and high nonlinearity, typical of this class of problems, require the development of robust and efficient techniques for inverse problems able to account for an irregular topography of the fitness surface. Within this framework, this work investigates the application of the gradient-based Sequential Quadratic Programming method, of the Nelder-Mead downhill simplex algorithm, of Particle Swarm Optimization (PSO), and of a global-local PSO-Nelder-Mead hybrid scheme to the identification of inelastic parameters based on a deep drawing operation. The hybrid technique has shown to be the best strategy by combining the good PSO performance to approach the global minimum basin of attraction with the efficiency demonstrated by the Nelder-Mead algorithm to obtain the minimum itself.2024-12-06T13:46:30Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 319 - 3341631-072110.1016/j.crme.2015.07.015https://repositorio.udesc.br/handle/UDESC/7607ark:/33523/001300000kp02Comptes Rendus - Mecanique3444-5Vaz M.*Luersen M.A.Munoz-Rojas P.A.*Trentin R.G.engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:54:46Zoai:repositorio.udesc.br:UDESC/7607Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:54:46Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false |
dc.title.none.fl_str_mv |
Identification of inelastic parameters based on deep drawing forming operations using a global-local hybrid Particle Swarm approach |
title |
Identification of inelastic parameters based on deep drawing forming operations using a global-local hybrid Particle Swarm approach |
spellingShingle |
Identification of inelastic parameters based on deep drawing forming operations using a global-local hybrid Particle Swarm approach Vaz M.* |
title_short |
Identification of inelastic parameters based on deep drawing forming operations using a global-local hybrid Particle Swarm approach |
title_full |
Identification of inelastic parameters based on deep drawing forming operations using a global-local hybrid Particle Swarm approach |
title_fullStr |
Identification of inelastic parameters based on deep drawing forming operations using a global-local hybrid Particle Swarm approach |
title_full_unstemmed |
Identification of inelastic parameters based on deep drawing forming operations using a global-local hybrid Particle Swarm approach |
title_sort |
Identification of inelastic parameters based on deep drawing forming operations using a global-local hybrid Particle Swarm approach |
author |
Vaz M.* |
author_facet |
Vaz M.* Luersen M.A. Munoz-Rojas P.A.* Trentin R.G. |
author_role |
author |
author2 |
Luersen M.A. Munoz-Rojas P.A.* Trentin R.G. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Vaz M.* Luersen M.A. Munoz-Rojas P.A.* Trentin R.G. |
description |
© 2016 Académie des sciences.Application of optimization techniques to the identification of inelastic material parameters has substantially increased in recent years. The complex stress-strain paths and high nonlinearity, typical of this class of problems, require the development of robust and efficient techniques for inverse problems able to account for an irregular topography of the fitness surface. Within this framework, this work investigates the application of the gradient-based Sequential Quadratic Programming method, of the Nelder-Mead downhill simplex algorithm, of Particle Swarm Optimization (PSO), and of a global-local PSO-Nelder-Mead hybrid scheme to the identification of inelastic parameters based on a deep drawing operation. The hybrid technique has shown to be the best strategy by combining the good PSO performance to approach the global minimum basin of attraction with the efficiency demonstrated by the Nelder-Mead algorithm to obtain the minimum itself. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2024-12-06T13:46:30Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
1631-0721 10.1016/j.crme.2015.07.015 https://repositorio.udesc.br/handle/UDESC/7607 |
dc.identifier.dark.fl_str_mv |
ark:/33523/001300000kp02 |
identifier_str_mv |
1631-0721 10.1016/j.crme.2015.07.015 ark:/33523/001300000kp02 |
url |
https://repositorio.udesc.br/handle/UDESC/7607 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Comptes Rendus - Mecanique 344 4-5 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
p. 319 - 334 |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Udesc instname:Universidade do Estado de Santa Catarina (UDESC) instacron:UDESC |
instname_str |
Universidade do Estado de Santa Catarina (UDESC) |
instacron_str |
UDESC |
institution |
UDESC |
reponame_str |
Repositório Institucional da Udesc |
collection |
Repositório Institucional da Udesc |
repository.name.fl_str_mv |
Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC) |
repository.mail.fl_str_mv |
ri@udesc.br |
_version_ |
1842258142882168832 |