Identification of inelastic parameters based on deep drawing forming operations using a global-local hybrid Particle Swarm approach

Bibliographic Details
Main Author: Vaz M.*
Publication Date: 2016
Other Authors: Luersen M.A., Munoz-Rojas P.A.*, Trentin R.G.
Format: Article
Language: eng
Source: Repositório Institucional da Udesc
dARK ID: ark:/33523/001300000kp02
Download full: https://repositorio.udesc.br/handle/UDESC/7607
Summary: © 2016 Académie des sciences.Application of optimization techniques to the identification of inelastic material parameters has substantially increased in recent years. The complex stress-strain paths and high nonlinearity, typical of this class of problems, require the development of robust and efficient techniques for inverse problems able to account for an irregular topography of the fitness surface. Within this framework, this work investigates the application of the gradient-based Sequential Quadratic Programming method, of the Nelder-Mead downhill simplex algorithm, of Particle Swarm Optimization (PSO), and of a global-local PSO-Nelder-Mead hybrid scheme to the identification of inelastic parameters based on a deep drawing operation. The hybrid technique has shown to be the best strategy by combining the good PSO performance to approach the global minimum basin of attraction with the efficiency demonstrated by the Nelder-Mead algorithm to obtain the minimum itself.
id UDESC-2_c1d70ed3d8d6b2d9f9691a6b96039a00
oai_identifier_str oai:repositorio.udesc.br:UDESC/7607
network_acronym_str UDESC-2
network_name_str Repositório Institucional da Udesc
repository_id_str 6391
spelling Identification of inelastic parameters based on deep drawing forming operations using a global-local hybrid Particle Swarm approach© 2016 Académie des sciences.Application of optimization techniques to the identification of inelastic material parameters has substantially increased in recent years. The complex stress-strain paths and high nonlinearity, typical of this class of problems, require the development of robust and efficient techniques for inverse problems able to account for an irregular topography of the fitness surface. Within this framework, this work investigates the application of the gradient-based Sequential Quadratic Programming method, of the Nelder-Mead downhill simplex algorithm, of Particle Swarm Optimization (PSO), and of a global-local PSO-Nelder-Mead hybrid scheme to the identification of inelastic parameters based on a deep drawing operation. The hybrid technique has shown to be the best strategy by combining the good PSO performance to approach the global minimum basin of attraction with the efficiency demonstrated by the Nelder-Mead algorithm to obtain the minimum itself.2024-12-06T13:46:30Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 319 - 3341631-072110.1016/j.crme.2015.07.015https://repositorio.udesc.br/handle/UDESC/7607ark:/33523/001300000kp02Comptes Rendus - Mecanique3444-5Vaz M.*Luersen M.A.Munoz-Rojas P.A.*Trentin R.G.engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:54:46Zoai:repositorio.udesc.br:UDESC/7607Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:54:46Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false
dc.title.none.fl_str_mv Identification of inelastic parameters based on deep drawing forming operations using a global-local hybrid Particle Swarm approach
title Identification of inelastic parameters based on deep drawing forming operations using a global-local hybrid Particle Swarm approach
spellingShingle Identification of inelastic parameters based on deep drawing forming operations using a global-local hybrid Particle Swarm approach
Vaz M.*
title_short Identification of inelastic parameters based on deep drawing forming operations using a global-local hybrid Particle Swarm approach
title_full Identification of inelastic parameters based on deep drawing forming operations using a global-local hybrid Particle Swarm approach
title_fullStr Identification of inelastic parameters based on deep drawing forming operations using a global-local hybrid Particle Swarm approach
title_full_unstemmed Identification of inelastic parameters based on deep drawing forming operations using a global-local hybrid Particle Swarm approach
title_sort Identification of inelastic parameters based on deep drawing forming operations using a global-local hybrid Particle Swarm approach
author Vaz M.*
author_facet Vaz M.*
Luersen M.A.
Munoz-Rojas P.A.*
Trentin R.G.
author_role author
author2 Luersen M.A.
Munoz-Rojas P.A.*
Trentin R.G.
author2_role author
author
author
dc.contributor.author.fl_str_mv Vaz M.*
Luersen M.A.
Munoz-Rojas P.A.*
Trentin R.G.
description © 2016 Académie des sciences.Application of optimization techniques to the identification of inelastic material parameters has substantially increased in recent years. The complex stress-strain paths and high nonlinearity, typical of this class of problems, require the development of robust and efficient techniques for inverse problems able to account for an irregular topography of the fitness surface. Within this framework, this work investigates the application of the gradient-based Sequential Quadratic Programming method, of the Nelder-Mead downhill simplex algorithm, of Particle Swarm Optimization (PSO), and of a global-local PSO-Nelder-Mead hybrid scheme to the identification of inelastic parameters based on a deep drawing operation. The hybrid technique has shown to be the best strategy by combining the good PSO performance to approach the global minimum basin of attraction with the efficiency demonstrated by the Nelder-Mead algorithm to obtain the minimum itself.
publishDate 2016
dc.date.none.fl_str_mv 2016
2024-12-06T13:46:30Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 1631-0721
10.1016/j.crme.2015.07.015
https://repositorio.udesc.br/handle/UDESC/7607
dc.identifier.dark.fl_str_mv ark:/33523/001300000kp02
identifier_str_mv 1631-0721
10.1016/j.crme.2015.07.015
ark:/33523/001300000kp02
url https://repositorio.udesc.br/handle/UDESC/7607
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Comptes Rendus - Mecanique
344
4-5
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv p. 319 - 334
dc.source.none.fl_str_mv reponame:Repositório Institucional da Udesc
instname:Universidade do Estado de Santa Catarina (UDESC)
instacron:UDESC
instname_str Universidade do Estado de Santa Catarina (UDESC)
instacron_str UDESC
institution UDESC
reponame_str Repositório Institucional da Udesc
collection Repositório Institucional da Udesc
repository.name.fl_str_mv Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)
repository.mail.fl_str_mv ri@udesc.br
_version_ 1842258142882168832