Particle swarm optimization and identification of inelastic material parameters
Main Author: | |
---|---|
Publication Date: | 2013 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da Udesc |
dARK ID: | ark:/33523/001300000372z |
Download full: | https://repositorio.udesc.br/handle/UDESC/8804 |
Summary: | Purpose - Parameter identification is a technique which aims at determining material or other process parameters based on a combination of experimental and numerical techniques. In recent years, heuristic approaches, such as genetic algorithms (GAs), have been proposed as possible alternatives to classical identification procedures. The present work shows that particle swarm optimization (PSO), as an example of such methods, is also appropriate to identification of inelastic parameters. The paper aims to discuss these issues. Design/methodology/approach - PSO is a class of swarm intelligence algorithms which attempts to reproduce the social behaviour of a generic population. In parameter identification, each individual particle is associated to hyper-coordinates in the search space, corresponding to a set of material parameters, upon which velocity operators with random components are applied, leading the particles to cluster together at convergence. Findings - PSO has proved to be a viable alternative to identification of inelastic parameters owing to its robustness (achieving the global minimum with high tolerance for variations of the population size and control parameters), and, contrasting to GAs, higher convergence rate and small number of control variables. Originality/value - PSO has been mostly applied to electrical and industrial engineering. This paper extends the field of application of the method to identification of inelastic material parameters. Copyright © 2013 Emerald Group Publishing Limited. All rights reserved. |
id |
UDESC-2_395a9ebd53a042ffa39f1af2966a0d85 |
---|---|
oai_identifier_str |
oai:repositorio.udesc.br:UDESC/8804 |
network_acronym_str |
UDESC-2 |
network_name_str |
Repositório Institucional da Udesc |
repository_id_str |
6391 |
spelling |
Particle swarm optimization and identification of inelastic material parametersPurpose - Parameter identification is a technique which aims at determining material or other process parameters based on a combination of experimental and numerical techniques. In recent years, heuristic approaches, such as genetic algorithms (GAs), have been proposed as possible alternatives to classical identification procedures. The present work shows that particle swarm optimization (PSO), as an example of such methods, is also appropriate to identification of inelastic parameters. The paper aims to discuss these issues. Design/methodology/approach - PSO is a class of swarm intelligence algorithms which attempts to reproduce the social behaviour of a generic population. In parameter identification, each individual particle is associated to hyper-coordinates in the search space, corresponding to a set of material parameters, upon which velocity operators with random components are applied, leading the particles to cluster together at convergence. Findings - PSO has proved to be a viable alternative to identification of inelastic parameters owing to its robustness (achieving the global minimum with high tolerance for variations of the population size and control parameters), and, contrasting to GAs, higher convergence rate and small number of control variables. Originality/value - PSO has been mostly applied to electrical and industrial engineering. This paper extends the field of application of the method to identification of inelastic material parameters. Copyright © 2013 Emerald Group Publishing Limited. All rights reserved.2024-12-06T14:31:14Z2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 936 - 9600264-440110.1108/EC-10-2011-0118https://repositorio.udesc.br/handle/UDESC/8804ark:/33523/001300000372zEngineering Computations (Swansea, Wales)307Vaz Jr. M.*Stahlschmidt J.*Cardoso, Eduardo Lenzengreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:58:54Zoai:repositorio.udesc.br:UDESC/8804Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:58:54Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false |
dc.title.none.fl_str_mv |
Particle swarm optimization and identification of inelastic material parameters |
title |
Particle swarm optimization and identification of inelastic material parameters |
spellingShingle |
Particle swarm optimization and identification of inelastic material parameters Vaz Jr. M.* |
title_short |
Particle swarm optimization and identification of inelastic material parameters |
title_full |
Particle swarm optimization and identification of inelastic material parameters |
title_fullStr |
Particle swarm optimization and identification of inelastic material parameters |
title_full_unstemmed |
Particle swarm optimization and identification of inelastic material parameters |
title_sort |
Particle swarm optimization and identification of inelastic material parameters |
author |
Vaz Jr. M.* |
author_facet |
Vaz Jr. M.* Stahlschmidt J.* Cardoso, Eduardo Lenz |
author_role |
author |
author2 |
Stahlschmidt J.* Cardoso, Eduardo Lenz |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Vaz Jr. M.* Stahlschmidt J.* Cardoso, Eduardo Lenz |
description |
Purpose - Parameter identification is a technique which aims at determining material or other process parameters based on a combination of experimental and numerical techniques. In recent years, heuristic approaches, such as genetic algorithms (GAs), have been proposed as possible alternatives to classical identification procedures. The present work shows that particle swarm optimization (PSO), as an example of such methods, is also appropriate to identification of inelastic parameters. The paper aims to discuss these issues. Design/methodology/approach - PSO is a class of swarm intelligence algorithms which attempts to reproduce the social behaviour of a generic population. In parameter identification, each individual particle is associated to hyper-coordinates in the search space, corresponding to a set of material parameters, upon which velocity operators with random components are applied, leading the particles to cluster together at convergence. Findings - PSO has proved to be a viable alternative to identification of inelastic parameters owing to its robustness (achieving the global minimum with high tolerance for variations of the population size and control parameters), and, contrasting to GAs, higher convergence rate and small number of control variables. Originality/value - PSO has been mostly applied to electrical and industrial engineering. This paper extends the field of application of the method to identification of inelastic material parameters. Copyright © 2013 Emerald Group Publishing Limited. All rights reserved. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 2024-12-06T14:31:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
0264-4401 10.1108/EC-10-2011-0118 https://repositorio.udesc.br/handle/UDESC/8804 |
dc.identifier.dark.fl_str_mv |
ark:/33523/001300000372z |
identifier_str_mv |
0264-4401 10.1108/EC-10-2011-0118 ark:/33523/001300000372z |
url |
https://repositorio.udesc.br/handle/UDESC/8804 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Engineering Computations (Swansea, Wales) 30 7 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
p. 936 - 960 |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Udesc instname:Universidade do Estado de Santa Catarina (UDESC) instacron:UDESC |
instname_str |
Universidade do Estado de Santa Catarina (UDESC) |
instacron_str |
UDESC |
institution |
UDESC |
reponame_str |
Repositório Institucional da Udesc |
collection |
Repositório Institucional da Udesc |
repository.name.fl_str_mv |
Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC) |
repository.mail.fl_str_mv |
ri@udesc.br |
_version_ |
1842258081222754304 |