Particle swarm optimization and identification of inelastic material parameters

Bibliographic Details
Main Author: Vaz Jr. M.*
Publication Date: 2013
Other Authors: Stahlschmidt J.*, Cardoso, Eduardo Lenz
Format: Article
Language: eng
Source: Repositório Institucional da Udesc
dARK ID: ark:/33523/001300000372z
Download full: https://repositorio.udesc.br/handle/UDESC/8804
Summary: Purpose - Parameter identification is a technique which aims at determining material or other process parameters based on a combination of experimental and numerical techniques. In recent years, heuristic approaches, such as genetic algorithms (GAs), have been proposed as possible alternatives to classical identification procedures. The present work shows that particle swarm optimization (PSO), as an example of such methods, is also appropriate to identification of inelastic parameters. The paper aims to discuss these issues. Design/methodology/approach - PSO is a class of swarm intelligence algorithms which attempts to reproduce the social behaviour of a generic population. In parameter identification, each individual particle is associated to hyper-coordinates in the search space, corresponding to a set of material parameters, upon which velocity operators with random components are applied, leading the particles to cluster together at convergence. Findings - PSO has proved to be a viable alternative to identification of inelastic parameters owing to its robustness (achieving the global minimum with high tolerance for variations of the population size and control parameters), and, contrasting to GAs, higher convergence rate and small number of control variables. Originality/value - PSO has been mostly applied to electrical and industrial engineering. This paper extends the field of application of the method to identification of inelastic material parameters. Copyright © 2013 Emerald Group Publishing Limited. All rights reserved.
id UDESC-2_395a9ebd53a042ffa39f1af2966a0d85
oai_identifier_str oai:repositorio.udesc.br:UDESC/8804
network_acronym_str UDESC-2
network_name_str Repositório Institucional da Udesc
repository_id_str 6391
spelling Particle swarm optimization and identification of inelastic material parametersPurpose - Parameter identification is a technique which aims at determining material or other process parameters based on a combination of experimental and numerical techniques. In recent years, heuristic approaches, such as genetic algorithms (GAs), have been proposed as possible alternatives to classical identification procedures. The present work shows that particle swarm optimization (PSO), as an example of such methods, is also appropriate to identification of inelastic parameters. The paper aims to discuss these issues. Design/methodology/approach - PSO is a class of swarm intelligence algorithms which attempts to reproduce the social behaviour of a generic population. In parameter identification, each individual particle is associated to hyper-coordinates in the search space, corresponding to a set of material parameters, upon which velocity operators with random components are applied, leading the particles to cluster together at convergence. Findings - PSO has proved to be a viable alternative to identification of inelastic parameters owing to its robustness (achieving the global minimum with high tolerance for variations of the population size and control parameters), and, contrasting to GAs, higher convergence rate and small number of control variables. Originality/value - PSO has been mostly applied to electrical and industrial engineering. This paper extends the field of application of the method to identification of inelastic material parameters. Copyright © 2013 Emerald Group Publishing Limited. All rights reserved.2024-12-06T14:31:14Z2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 936 - 9600264-440110.1108/EC-10-2011-0118https://repositorio.udesc.br/handle/UDESC/8804ark:/33523/001300000372zEngineering Computations (Swansea, Wales)307Vaz Jr. M.*Stahlschmidt J.*Cardoso, Eduardo Lenzengreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:58:54Zoai:repositorio.udesc.br:UDESC/8804Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:58:54Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false
dc.title.none.fl_str_mv Particle swarm optimization and identification of inelastic material parameters
title Particle swarm optimization and identification of inelastic material parameters
spellingShingle Particle swarm optimization and identification of inelastic material parameters
Vaz Jr. M.*
title_short Particle swarm optimization and identification of inelastic material parameters
title_full Particle swarm optimization and identification of inelastic material parameters
title_fullStr Particle swarm optimization and identification of inelastic material parameters
title_full_unstemmed Particle swarm optimization and identification of inelastic material parameters
title_sort Particle swarm optimization and identification of inelastic material parameters
author Vaz Jr. M.*
author_facet Vaz Jr. M.*
Stahlschmidt J.*
Cardoso, Eduardo Lenz
author_role author
author2 Stahlschmidt J.*
Cardoso, Eduardo Lenz
author2_role author
author
dc.contributor.author.fl_str_mv Vaz Jr. M.*
Stahlschmidt J.*
Cardoso, Eduardo Lenz
description Purpose - Parameter identification is a technique which aims at determining material or other process parameters based on a combination of experimental and numerical techniques. In recent years, heuristic approaches, such as genetic algorithms (GAs), have been proposed as possible alternatives to classical identification procedures. The present work shows that particle swarm optimization (PSO), as an example of such methods, is also appropriate to identification of inelastic parameters. The paper aims to discuss these issues. Design/methodology/approach - PSO is a class of swarm intelligence algorithms which attempts to reproduce the social behaviour of a generic population. In parameter identification, each individual particle is associated to hyper-coordinates in the search space, corresponding to a set of material parameters, upon which velocity operators with random components are applied, leading the particles to cluster together at convergence. Findings - PSO has proved to be a viable alternative to identification of inelastic parameters owing to its robustness (achieving the global minimum with high tolerance for variations of the population size and control parameters), and, contrasting to GAs, higher convergence rate and small number of control variables. Originality/value - PSO has been mostly applied to electrical and industrial engineering. This paper extends the field of application of the method to identification of inelastic material parameters. Copyright © 2013 Emerald Group Publishing Limited. All rights reserved.
publishDate 2013
dc.date.none.fl_str_mv 2013
2024-12-06T14:31:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 0264-4401
10.1108/EC-10-2011-0118
https://repositorio.udesc.br/handle/UDESC/8804
dc.identifier.dark.fl_str_mv ark:/33523/001300000372z
identifier_str_mv 0264-4401
10.1108/EC-10-2011-0118
ark:/33523/001300000372z
url https://repositorio.udesc.br/handle/UDESC/8804
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Engineering Computations (Swansea, Wales)
30
7
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv p. 936 - 960
dc.source.none.fl_str_mv reponame:Repositório Institucional da Udesc
instname:Universidade do Estado de Santa Catarina (UDESC)
instacron:UDESC
instname_str Universidade do Estado de Santa Catarina (UDESC)
instacron_str UDESC
institution UDESC
reponame_str Repositório Institucional da Udesc
collection Repositório Institucional da Udesc
repository.name.fl_str_mv Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)
repository.mail.fl_str_mv ri@udesc.br
_version_ 1842258081222754304