Multistability and period-adding in a logarithmic Lorenz system
Main Author: | |
---|---|
Publication Date: | 2022 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da Udesc |
dARK ID: | ark:/33523/0013000008nfk |
Download full: | https://repositorio.udesc.br/handle/UDESC/3031 |
Summary: | © 2022 World Scientific Publishing Company.In this paper, we design and explore a novel 3D autonomous nonlinear system with logarithmic nonlinearity. It is framed from the Lorenz model by replacing the variable y in the second equation by the nonlinear logarithmic term ln|y|. The bi-parametric dynamics of the modeled system is presented. Studies reveal the emergence of shrimp-shaped periodic structures in chaotic regime with period-adding phenomenon, and coexisting periodic-chaotic attractors, which do not occur in the Lorenz model. The stability, bifurcation patterns, and chaotic behaviors of the system are explored with the aid of bifurcation diagrams, phase portraits and Lyapunov exponents. The complexity of the basin sets for the coexisting attractors is also studied. |
id |
UDESC-2_723f791ebd056931812a4cda944726e4 |
---|---|
oai_identifier_str |
oai:repositorio.udesc.br:UDESC/3031 |
network_acronym_str |
UDESC-2 |
network_name_str |
Repositório Institucional da Udesc |
repository_id_str |
6391 |
spelling |
Multistability and period-adding in a logarithmic Lorenz system© 2022 World Scientific Publishing Company.In this paper, we design and explore a novel 3D autonomous nonlinear system with logarithmic nonlinearity. It is framed from the Lorenz model by replacing the variable y in the second equation by the nonlinear logarithmic term ln|y|. The bi-parametric dynamics of the modeled system is presented. Studies reveal the emergence of shrimp-shaped periodic structures in chaotic regime with period-adding phenomenon, and coexisting periodic-chaotic attractors, which do not occur in the Lorenz model. The stability, bifurcation patterns, and chaotic behaviors of the system are explored with the aid of bifurcation diagrams, phase portraits and Lyapunov exponents. The complexity of the basin sets for the coexisting attractors is also studied.2024-12-05T20:27:02Z2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article0129-183110.1142/S0129183122500620https://repositorio.udesc.br/handle/UDESC/3031ark:/33523/0013000008nfkInternational Journal of Modern Physics C335Da Silva A.*Pati N.C.Rech P.C.*engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:40:32Zoai:repositorio.udesc.br:UDESC/3031Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:40:32Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false |
dc.title.none.fl_str_mv |
Multistability and period-adding in a logarithmic Lorenz system |
title |
Multistability and period-adding in a logarithmic Lorenz system |
spellingShingle |
Multistability and period-adding in a logarithmic Lorenz system Da Silva A.* |
title_short |
Multistability and period-adding in a logarithmic Lorenz system |
title_full |
Multistability and period-adding in a logarithmic Lorenz system |
title_fullStr |
Multistability and period-adding in a logarithmic Lorenz system |
title_full_unstemmed |
Multistability and period-adding in a logarithmic Lorenz system |
title_sort |
Multistability and period-adding in a logarithmic Lorenz system |
author |
Da Silva A.* |
author_facet |
Da Silva A.* Pati N.C. Rech P.C.* |
author_role |
author |
author2 |
Pati N.C. Rech P.C.* |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Da Silva A.* Pati N.C. Rech P.C.* |
description |
© 2022 World Scientific Publishing Company.In this paper, we design and explore a novel 3D autonomous nonlinear system with logarithmic nonlinearity. It is framed from the Lorenz model by replacing the variable y in the second equation by the nonlinear logarithmic term ln|y|. The bi-parametric dynamics of the modeled system is presented. Studies reveal the emergence of shrimp-shaped periodic structures in chaotic regime with period-adding phenomenon, and coexisting periodic-chaotic attractors, which do not occur in the Lorenz model. The stability, bifurcation patterns, and chaotic behaviors of the system are explored with the aid of bifurcation diagrams, phase portraits and Lyapunov exponents. The complexity of the basin sets for the coexisting attractors is also studied. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 2024-12-05T20:27:02Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
0129-1831 10.1142/S0129183122500620 https://repositorio.udesc.br/handle/UDESC/3031 |
dc.identifier.dark.fl_str_mv |
ark:/33523/0013000008nfk |
identifier_str_mv |
0129-1831 10.1142/S0129183122500620 ark:/33523/0013000008nfk |
url |
https://repositorio.udesc.br/handle/UDESC/3031 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
International Journal of Modern Physics C 33 5 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Udesc instname:Universidade do Estado de Santa Catarina (UDESC) instacron:UDESC |
instname_str |
Universidade do Estado de Santa Catarina (UDESC) |
instacron_str |
UDESC |
institution |
UDESC |
reponame_str |
Repositório Institucional da Udesc |
collection |
Repositório Institucional da Udesc |
repository.name.fl_str_mv |
Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC) |
repository.mail.fl_str_mv |
ri@udesc.br |
_version_ |
1842258103236558848 |