Multistability and period-adding in a logarithmic Lorenz system

Bibliographic Details
Main Author: Da Silva A.*
Publication Date: 2022
Other Authors: Pati N.C., Rech P.C.*
Format: Article
Language: eng
Source: Repositório Institucional da Udesc
dARK ID: ark:/33523/0013000008nfk
Download full: https://repositorio.udesc.br/handle/UDESC/3031
Summary: © 2022 World Scientific Publishing Company.In this paper, we design and explore a novel 3D autonomous nonlinear system with logarithmic nonlinearity. It is framed from the Lorenz model by replacing the variable y in the second equation by the nonlinear logarithmic term ln|y|. The bi-parametric dynamics of the modeled system is presented. Studies reveal the emergence of shrimp-shaped periodic structures in chaotic regime with period-adding phenomenon, and coexisting periodic-chaotic attractors, which do not occur in the Lorenz model. The stability, bifurcation patterns, and chaotic behaviors of the system are explored with the aid of bifurcation diagrams, phase portraits and Lyapunov exponents. The complexity of the basin sets for the coexisting attractors is also studied.
id UDESC-2_723f791ebd056931812a4cda944726e4
oai_identifier_str oai:repositorio.udesc.br:UDESC/3031
network_acronym_str UDESC-2
network_name_str Repositório Institucional da Udesc
repository_id_str 6391
spelling Multistability and period-adding in a logarithmic Lorenz system© 2022 World Scientific Publishing Company.In this paper, we design and explore a novel 3D autonomous nonlinear system with logarithmic nonlinearity. It is framed from the Lorenz model by replacing the variable y in the second equation by the nonlinear logarithmic term ln|y|. The bi-parametric dynamics of the modeled system is presented. Studies reveal the emergence of shrimp-shaped periodic structures in chaotic regime with period-adding phenomenon, and coexisting periodic-chaotic attractors, which do not occur in the Lorenz model. The stability, bifurcation patterns, and chaotic behaviors of the system are explored with the aid of bifurcation diagrams, phase portraits and Lyapunov exponents. The complexity of the basin sets for the coexisting attractors is also studied.2024-12-05T20:27:02Z2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article0129-183110.1142/S0129183122500620https://repositorio.udesc.br/handle/UDESC/3031ark:/33523/0013000008nfkInternational Journal of Modern Physics C335Da Silva A.*Pati N.C.Rech P.C.*engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:40:32Zoai:repositorio.udesc.br:UDESC/3031Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:40:32Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false
dc.title.none.fl_str_mv Multistability and period-adding in a logarithmic Lorenz system
title Multistability and period-adding in a logarithmic Lorenz system
spellingShingle Multistability and period-adding in a logarithmic Lorenz system
Da Silva A.*
title_short Multistability and period-adding in a logarithmic Lorenz system
title_full Multistability and period-adding in a logarithmic Lorenz system
title_fullStr Multistability and period-adding in a logarithmic Lorenz system
title_full_unstemmed Multistability and period-adding in a logarithmic Lorenz system
title_sort Multistability and period-adding in a logarithmic Lorenz system
author Da Silva A.*
author_facet Da Silva A.*
Pati N.C.
Rech P.C.*
author_role author
author2 Pati N.C.
Rech P.C.*
author2_role author
author
dc.contributor.author.fl_str_mv Da Silva A.*
Pati N.C.
Rech P.C.*
description © 2022 World Scientific Publishing Company.In this paper, we design and explore a novel 3D autonomous nonlinear system with logarithmic nonlinearity. It is framed from the Lorenz model by replacing the variable y in the second equation by the nonlinear logarithmic term ln|y|. The bi-parametric dynamics of the modeled system is presented. Studies reveal the emergence of shrimp-shaped periodic structures in chaotic regime with period-adding phenomenon, and coexisting periodic-chaotic attractors, which do not occur in the Lorenz model. The stability, bifurcation patterns, and chaotic behaviors of the system are explored with the aid of bifurcation diagrams, phase portraits and Lyapunov exponents. The complexity of the basin sets for the coexisting attractors is also studied.
publishDate 2022
dc.date.none.fl_str_mv 2022
2024-12-05T20:27:02Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 0129-1831
10.1142/S0129183122500620
https://repositorio.udesc.br/handle/UDESC/3031
dc.identifier.dark.fl_str_mv ark:/33523/0013000008nfk
identifier_str_mv 0129-1831
10.1142/S0129183122500620
ark:/33523/0013000008nfk
url https://repositorio.udesc.br/handle/UDESC/3031
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Journal of Modern Physics C
33
5
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Udesc
instname:Universidade do Estado de Santa Catarina (UDESC)
instacron:UDESC
instname_str Universidade do Estado de Santa Catarina (UDESC)
instacron_str UDESC
institution UDESC
reponame_str Repositório Institucional da Udesc
collection Repositório Institucional da Udesc
repository.name.fl_str_mv Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)
repository.mail.fl_str_mv ri@udesc.br
_version_ 1842258103236558848