Multistability, period-adding, and fractality in a plasma oscillator

Bibliographic Details
Main Author: Rech P.C.*
Publication Date: 2023
Other Authors: Recco, Abel Andre Candido, Sagas, Julio Cesar
Format: Article
Language: eng
Source: Repositório Institucional da Udesc
dARK ID: ark:/33523/0013000008n0h
Download full: https://repositorio.udesc.br/handle/UDESC/2159
Summary: © 2023 Author(s).In this paper, we report on a periodically driven plasma oscillator modeled by a six-parameter nonhomogeneous second-order ordinary differential equation. We fix four of these parameters, and investigate the dynamics of this system by varying the other two, namely, the amplitude A and the angular frequency ω of the driving. In other words, we investigate the ( ω , A ) parameter plane, where the dynamical behavior of each point was characterized by the magnitude of the largest Lyapunov exponent. Then, we show that this parameter plane reveals the occurrence of the multistability phenomenon in the system. Properly generated bifurcation diagrams confirm this finding. Basins of attraction of coexisting periodic and chaotic attractors in the phase-space are presented. We also report on the organization of periodicity and chaos in the ( ω , A ) parameter plane. Typical periodic structures were detected embedded in a chaotic region, namely, the cuspidal, the non-cuspidal, and the shrimp-like. At a certain location on the parameter plane, the organization of the shrimp-like periodic structures resembles a fractal, since the same shape is seen when we look through different scales. Elsewhere these same structures appear organized in a period-adding sequence.
id UDESC-2_4de260f1bdb418c26935a2ba4b89adbf
oai_identifier_str oai:repositorio.udesc.br:UDESC/2159
network_acronym_str UDESC-2
network_name_str Repositório Institucional da Udesc
repository_id_str 6391
spelling Multistability, period-adding, and fractality in a plasma oscillator© 2023 Author(s).In this paper, we report on a periodically driven plasma oscillator modeled by a six-parameter nonhomogeneous second-order ordinary differential equation. We fix four of these parameters, and investigate the dynamics of this system by varying the other two, namely, the amplitude A and the angular frequency ω of the driving. In other words, we investigate the ( ω , A ) parameter plane, where the dynamical behavior of each point was characterized by the magnitude of the largest Lyapunov exponent. Then, we show that this parameter plane reveals the occurrence of the multistability phenomenon in the system. Properly generated bifurcation diagrams confirm this finding. Basins of attraction of coexisting periodic and chaotic attractors in the phase-space are presented. We also report on the organization of periodicity and chaos in the ( ω , A ) parameter plane. Typical periodic structures were detected embedded in a chaotic region, namely, the cuspidal, the non-cuspidal, and the shrimp-like. At a certain location on the parameter plane, the organization of the shrimp-like periodic structures resembles a fractal, since the same shape is seen when we look through different scales. Elsewhere these same structures appear organized in a period-adding sequence.2024-12-05T13:50:20Z2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1089-767410.1063/5.0173524https://repositorio.udesc.br/handle/UDESC/2159ark:/33523/0013000008n0hPhysics of Plasmas3011Rech P.C.*Recco, Abel Andre CandidoSagas, Julio Cesarengreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:37:58Zoai:repositorio.udesc.br:UDESC/2159Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:37:58Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false
dc.title.none.fl_str_mv Multistability, period-adding, and fractality in a plasma oscillator
title Multistability, period-adding, and fractality in a plasma oscillator
spellingShingle Multistability, period-adding, and fractality in a plasma oscillator
Rech P.C.*
title_short Multistability, period-adding, and fractality in a plasma oscillator
title_full Multistability, period-adding, and fractality in a plasma oscillator
title_fullStr Multistability, period-adding, and fractality in a plasma oscillator
title_full_unstemmed Multistability, period-adding, and fractality in a plasma oscillator
title_sort Multistability, period-adding, and fractality in a plasma oscillator
author Rech P.C.*
author_facet Rech P.C.*
Recco, Abel Andre Candido
Sagas, Julio Cesar
author_role author
author2 Recco, Abel Andre Candido
Sagas, Julio Cesar
author2_role author
author
dc.contributor.author.fl_str_mv Rech P.C.*
Recco, Abel Andre Candido
Sagas, Julio Cesar
description © 2023 Author(s).In this paper, we report on a periodically driven plasma oscillator modeled by a six-parameter nonhomogeneous second-order ordinary differential equation. We fix four of these parameters, and investigate the dynamics of this system by varying the other two, namely, the amplitude A and the angular frequency ω of the driving. In other words, we investigate the ( ω , A ) parameter plane, where the dynamical behavior of each point was characterized by the magnitude of the largest Lyapunov exponent. Then, we show that this parameter plane reveals the occurrence of the multistability phenomenon in the system. Properly generated bifurcation diagrams confirm this finding. Basins of attraction of coexisting periodic and chaotic attractors in the phase-space are presented. We also report on the organization of periodicity and chaos in the ( ω , A ) parameter plane. Typical periodic structures were detected embedded in a chaotic region, namely, the cuspidal, the non-cuspidal, and the shrimp-like. At a certain location on the parameter plane, the organization of the shrimp-like periodic structures resembles a fractal, since the same shape is seen when we look through different scales. Elsewhere these same structures appear organized in a period-adding sequence.
publishDate 2023
dc.date.none.fl_str_mv 2023
2024-12-05T13:50:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 1089-7674
10.1063/5.0173524
https://repositorio.udesc.br/handle/UDESC/2159
dc.identifier.dark.fl_str_mv ark:/33523/0013000008n0h
identifier_str_mv 1089-7674
10.1063/5.0173524
ark:/33523/0013000008n0h
url https://repositorio.udesc.br/handle/UDESC/2159
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physics of Plasmas
30
11
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Udesc
instname:Universidade do Estado de Santa Catarina (UDESC)
instacron:UDESC
instname_str Universidade do Estado de Santa Catarina (UDESC)
instacron_str UDESC
institution UDESC
reponame_str Repositório Institucional da Udesc
collection Repositório Institucional da Udesc
repository.name.fl_str_mv Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)
repository.mail.fl_str_mv ri@udesc.br
_version_ 1842258103215587328