Multistability, period-adding, and fractality in a plasma oscillator
Main Author: | |
---|---|
Publication Date: | 2023 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da Udesc |
dARK ID: | ark:/33523/0013000008n0h |
Download full: | https://repositorio.udesc.br/handle/UDESC/2159 |
Summary: | © 2023 Author(s).In this paper, we report on a periodically driven plasma oscillator modeled by a six-parameter nonhomogeneous second-order ordinary differential equation. We fix four of these parameters, and investigate the dynamics of this system by varying the other two, namely, the amplitude A and the angular frequency ω of the driving. In other words, we investigate the ( ω , A ) parameter plane, where the dynamical behavior of each point was characterized by the magnitude of the largest Lyapunov exponent. Then, we show that this parameter plane reveals the occurrence of the multistability phenomenon in the system. Properly generated bifurcation diagrams confirm this finding. Basins of attraction of coexisting periodic and chaotic attractors in the phase-space are presented. We also report on the organization of periodicity and chaos in the ( ω , A ) parameter plane. Typical periodic structures were detected embedded in a chaotic region, namely, the cuspidal, the non-cuspidal, and the shrimp-like. At a certain location on the parameter plane, the organization of the shrimp-like periodic structures resembles a fractal, since the same shape is seen when we look through different scales. Elsewhere these same structures appear organized in a period-adding sequence. |
id |
UDESC-2_4de260f1bdb418c26935a2ba4b89adbf |
---|---|
oai_identifier_str |
oai:repositorio.udesc.br:UDESC/2159 |
network_acronym_str |
UDESC-2 |
network_name_str |
Repositório Institucional da Udesc |
repository_id_str |
6391 |
spelling |
Multistability, period-adding, and fractality in a plasma oscillator© 2023 Author(s).In this paper, we report on a periodically driven plasma oscillator modeled by a six-parameter nonhomogeneous second-order ordinary differential equation. We fix four of these parameters, and investigate the dynamics of this system by varying the other two, namely, the amplitude A and the angular frequency ω of the driving. In other words, we investigate the ( ω , A ) parameter plane, where the dynamical behavior of each point was characterized by the magnitude of the largest Lyapunov exponent. Then, we show that this parameter plane reveals the occurrence of the multistability phenomenon in the system. Properly generated bifurcation diagrams confirm this finding. Basins of attraction of coexisting periodic and chaotic attractors in the phase-space are presented. We also report on the organization of periodicity and chaos in the ( ω , A ) parameter plane. Typical periodic structures were detected embedded in a chaotic region, namely, the cuspidal, the non-cuspidal, and the shrimp-like. At a certain location on the parameter plane, the organization of the shrimp-like periodic structures resembles a fractal, since the same shape is seen when we look through different scales. Elsewhere these same structures appear organized in a period-adding sequence.2024-12-05T13:50:20Z2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1089-767410.1063/5.0173524https://repositorio.udesc.br/handle/UDESC/2159ark:/33523/0013000008n0hPhysics of Plasmas3011Rech P.C.*Recco, Abel Andre CandidoSagas, Julio Cesarengreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:37:58Zoai:repositorio.udesc.br:UDESC/2159Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:37:58Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false |
dc.title.none.fl_str_mv |
Multistability, period-adding, and fractality in a plasma oscillator |
title |
Multistability, period-adding, and fractality in a plasma oscillator |
spellingShingle |
Multistability, period-adding, and fractality in a plasma oscillator Rech P.C.* |
title_short |
Multistability, period-adding, and fractality in a plasma oscillator |
title_full |
Multistability, period-adding, and fractality in a plasma oscillator |
title_fullStr |
Multistability, period-adding, and fractality in a plasma oscillator |
title_full_unstemmed |
Multistability, period-adding, and fractality in a plasma oscillator |
title_sort |
Multistability, period-adding, and fractality in a plasma oscillator |
author |
Rech P.C.* |
author_facet |
Rech P.C.* Recco, Abel Andre Candido Sagas, Julio Cesar |
author_role |
author |
author2 |
Recco, Abel Andre Candido Sagas, Julio Cesar |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Rech P.C.* Recco, Abel Andre Candido Sagas, Julio Cesar |
description |
© 2023 Author(s).In this paper, we report on a periodically driven plasma oscillator modeled by a six-parameter nonhomogeneous second-order ordinary differential equation. We fix four of these parameters, and investigate the dynamics of this system by varying the other two, namely, the amplitude A and the angular frequency ω of the driving. In other words, we investigate the ( ω , A ) parameter plane, where the dynamical behavior of each point was characterized by the magnitude of the largest Lyapunov exponent. Then, we show that this parameter plane reveals the occurrence of the multistability phenomenon in the system. Properly generated bifurcation diagrams confirm this finding. Basins of attraction of coexisting periodic and chaotic attractors in the phase-space are presented. We also report on the organization of periodicity and chaos in the ( ω , A ) parameter plane. Typical periodic structures were detected embedded in a chaotic region, namely, the cuspidal, the non-cuspidal, and the shrimp-like. At a certain location on the parameter plane, the organization of the shrimp-like periodic structures resembles a fractal, since the same shape is seen when we look through different scales. Elsewhere these same structures appear organized in a period-adding sequence. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 2024-12-05T13:50:20Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
1089-7674 10.1063/5.0173524 https://repositorio.udesc.br/handle/UDESC/2159 |
dc.identifier.dark.fl_str_mv |
ark:/33523/0013000008n0h |
identifier_str_mv |
1089-7674 10.1063/5.0173524 ark:/33523/0013000008n0h |
url |
https://repositorio.udesc.br/handle/UDESC/2159 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physics of Plasmas 30 11 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Udesc instname:Universidade do Estado de Santa Catarina (UDESC) instacron:UDESC |
instname_str |
Universidade do Estado de Santa Catarina (UDESC) |
instacron_str |
UDESC |
institution |
UDESC |
reponame_str |
Repositório Institucional da Udesc |
collection |
Repositório Institucional da Udesc |
repository.name.fl_str_mv |
Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC) |
repository.mail.fl_str_mv |
ri@udesc.br |
_version_ |
1842258103215587328 |