A deterministic-stochastic method for nonconvex MINLP problems

Detalhes bibliográficos
Autor(a) principal: Fernandes, Florbela P.
Data de Publicação: 2010
Outros Autores: Fernandes, Edite M.G.P., Costa, Maria F.P.
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10198/3825
Resumo: A mixed-integer programming problem is one where some of the variables must have only integer values. Although some real practical problems can be solved with mixed-integer linear methods, there are problems occurring in the engineering area that are modelled as mixed-integer nonlinear programming (MINLP) problems. When they contain nonconvex functions then they are the most difficult of all since they combine all the difficulties arising from the two sub-classes: mixed-integer linear programming and nonconvex nonlinear programming (NLP). Efficient deterministic methods for solving MINLP are clever combinations of Branch-and-Bound (B&B) and Outer-Approximations classes. When solving nonconvex NLP relaxation problems that arise in the nodes of a tree in a B&B algorithm, using local search methods, only convergence to local optimal solutions is guaranteed. Pruning criteria cannot be used to avoid an exhaustive search in the solution space. To address this issue, we propose the use of a simulated annealing algorithm to guarantee convergence, at least with probability one, to a global optimum of the nonconvex NLP relaxation problem. We present some preliminary tests with our algorithm.
id RCAP_f97a5b5d1cf5572ff6f656d482f68d3d
oai_identifier_str oai:bibliotecadigital.ipb.pt:10198/3825
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling A deterministic-stochastic method for nonconvex MINLP problemsMixed-Integer programmingBranch-and-boundStochastic methodA mixed-integer programming problem is one where some of the variables must have only integer values. Although some real practical problems can be solved with mixed-integer linear methods, there are problems occurring in the engineering area that are modelled as mixed-integer nonlinear programming (MINLP) problems. When they contain nonconvex functions then they are the most difficult of all since they combine all the difficulties arising from the two sub-classes: mixed-integer linear programming and nonconvex nonlinear programming (NLP). Efficient deterministic methods for solving MINLP are clever combinations of Branch-and-Bound (B&B) and Outer-Approximations classes. When solving nonconvex NLP relaxation problems that arise in the nodes of a tree in a B&B algorithm, using local search methods, only convergence to local optimal solutions is guaranteed. Pruning criteria cannot be used to avoid an exhaustive search in the solution space. To address this issue, we propose the use of a simulated annealing algorithm to guarantee convergence, at least with probability one, to a global optimum of the nonconvex NLP relaxation problem. We present some preliminary tests with our algorithm.FCT (CMAT-Universidade do Minho)Biblioteca Digital do IPBFernandes, Florbela P.Fernandes, Edite M.G.P.Costa, Maria F.P.2011-03-30T16:29:55Z20102010-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10198/3825engFernandes, Florbela P.; Fernandes, Edite M. G. P.; Costa, Maria F.P. (2010). A deterministic-stochastic method for nonconvex MINLP problems. In Proceedings of 2nd International Conference on Engineering Optimization. Lisboa, Portugal. ISBN: 978‐989‐96264‐ 3‐0.978-989-96264-3-0info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T11:55:58Zoai:bibliotecadigital.ipb.pt:10198/3825Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:17:32.886606Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv A deterministic-stochastic method for nonconvex MINLP problems
title A deterministic-stochastic method for nonconvex MINLP problems
spellingShingle A deterministic-stochastic method for nonconvex MINLP problems
Fernandes, Florbela P.
Mixed-Integer programming
Branch-and-bound
Stochastic method
title_short A deterministic-stochastic method for nonconvex MINLP problems
title_full A deterministic-stochastic method for nonconvex MINLP problems
title_fullStr A deterministic-stochastic method for nonconvex MINLP problems
title_full_unstemmed A deterministic-stochastic method for nonconvex MINLP problems
title_sort A deterministic-stochastic method for nonconvex MINLP problems
author Fernandes, Florbela P.
author_facet Fernandes, Florbela P.
Fernandes, Edite M.G.P.
Costa, Maria F.P.
author_role author
author2 Fernandes, Edite M.G.P.
Costa, Maria F.P.
author2_role author
author
dc.contributor.none.fl_str_mv Biblioteca Digital do IPB
dc.contributor.author.fl_str_mv Fernandes, Florbela P.
Fernandes, Edite M.G.P.
Costa, Maria F.P.
dc.subject.por.fl_str_mv Mixed-Integer programming
Branch-and-bound
Stochastic method
topic Mixed-Integer programming
Branch-and-bound
Stochastic method
description A mixed-integer programming problem is one where some of the variables must have only integer values. Although some real practical problems can be solved with mixed-integer linear methods, there are problems occurring in the engineering area that are modelled as mixed-integer nonlinear programming (MINLP) problems. When they contain nonconvex functions then they are the most difficult of all since they combine all the difficulties arising from the two sub-classes: mixed-integer linear programming and nonconvex nonlinear programming (NLP). Efficient deterministic methods for solving MINLP are clever combinations of Branch-and-Bound (B&B) and Outer-Approximations classes. When solving nonconvex NLP relaxation problems that arise in the nodes of a tree in a B&B algorithm, using local search methods, only convergence to local optimal solutions is guaranteed. Pruning criteria cannot be used to avoid an exhaustive search in the solution space. To address this issue, we propose the use of a simulated annealing algorithm to guarantee convergence, at least with probability one, to a global optimum of the nonconvex NLP relaxation problem. We present some preliminary tests with our algorithm.
publishDate 2010
dc.date.none.fl_str_mv 2010
2010-01-01T00:00:00Z
2011-03-30T16:29:55Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10198/3825
url http://hdl.handle.net/10198/3825
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Fernandes, Florbela P.; Fernandes, Edite M. G. P.; Costa, Maria F.P. (2010). A deterministic-stochastic method for nonconvex MINLP problems. In Proceedings of 2nd International Conference on Engineering Optimization. Lisboa, Portugal. ISBN: 978‐989‐96264‐ 3‐0.
978-989-96264-3-0
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833591771881275392