A deterministic-stochastic method for nonconvex MINLP problems

Detalhes bibliográficos
Autor(a) principal: Costa, M. Fernanda P.
Data de Publicação: 2010
Outros Autores: Fernandes, Florbela P., Fernandes, Edite Manuela da G. P.
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/1822/14290
Resumo: A mixed-integer programming problem is one where some of the variables must have only integer values. Although some real practical problems can be solved with mixed-integer linear methods, there are problems occurring in the engineering area that are modelled as mixed-integer nonlinear programming (MINLP) problems. When they contain nonconvex functions then they are the most difficult of all since they combine all the difficulties arising from the two sub-classes: mixed-integer linear programming and nonconvex nonlinear programming (NLP). Efficient deterministic methods for solving MINLP are clever combinations of Branch-and-Bound (B&B) and Outer-Approximations classes. When solving nonconvex NLP relaxation problems that arise in the nodes of a tree in a B&B algorithm, using local search methods, only convergence to local optimal solutions is guaranteed. Pruning criteria cannot be used to avoid an exhaustive search in the solution space. To address this issue, we propose the use of a simulated annealing algorithm to guarantee convergence, at least with probability one, to a global optimum of the nonconvex NLP relaxation problem. We present some preliminary tests with our algorithm.
id RCAP_0f0914df4953072e7ada09c7d94d4ab9
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/14290
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling A deterministic-stochastic method for nonconvex MINLP problemsMixed-integer programmingBranch-and-BoundStochastic methodA mixed-integer programming problem is one where some of the variables must have only integer values. Although some real practical problems can be solved with mixed-integer linear methods, there are problems occurring in the engineering area that are modelled as mixed-integer nonlinear programming (MINLP) problems. When they contain nonconvex functions then they are the most difficult of all since they combine all the difficulties arising from the two sub-classes: mixed-integer linear programming and nonconvex nonlinear programming (NLP). Efficient deterministic methods for solving MINLP are clever combinations of Branch-and-Bound (B&B) and Outer-Approximations classes. When solving nonconvex NLP relaxation problems that arise in the nodes of a tree in a B&B algorithm, using local search methods, only convergence to local optimal solutions is guaranteed. Pruning criteria cannot be used to avoid an exhaustive search in the solution space. To address this issue, we propose the use of a simulated annealing algorithm to guarantee convergence, at least with probability one, to a global optimum of the nonconvex NLP relaxation problem. We present some preliminary tests with our algorithm.Fundação para a Ciência e a TecnologiaUniversidade de Lisboa. Instituto Superior Técnico (IST)Universidade do MinhoCosta, M. Fernanda P.Fernandes, Florbela P.Fernandes, Edite Manuela da G. P.20102010-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/14290enghttp://lemac1.dem.ist.utl.pt/engopt2010/Book_and_CD/Papers_CD_Final_Version/html/papers.htmlinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:14:15Zoai:repositorium.sdum.uminho.pt:1822/14290Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:11:59.244537Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv A deterministic-stochastic method for nonconvex MINLP problems
title A deterministic-stochastic method for nonconvex MINLP problems
spellingShingle A deterministic-stochastic method for nonconvex MINLP problems
Costa, M. Fernanda P.
Mixed-integer programming
Branch-and-Bound
Stochastic method
title_short A deterministic-stochastic method for nonconvex MINLP problems
title_full A deterministic-stochastic method for nonconvex MINLP problems
title_fullStr A deterministic-stochastic method for nonconvex MINLP problems
title_full_unstemmed A deterministic-stochastic method for nonconvex MINLP problems
title_sort A deterministic-stochastic method for nonconvex MINLP problems
author Costa, M. Fernanda P.
author_facet Costa, M. Fernanda P.
Fernandes, Florbela P.
Fernandes, Edite Manuela da G. P.
author_role author
author2 Fernandes, Florbela P.
Fernandes, Edite Manuela da G. P.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Costa, M. Fernanda P.
Fernandes, Florbela P.
Fernandes, Edite Manuela da G. P.
dc.subject.por.fl_str_mv Mixed-integer programming
Branch-and-Bound
Stochastic method
topic Mixed-integer programming
Branch-and-Bound
Stochastic method
description A mixed-integer programming problem is one where some of the variables must have only integer values. Although some real practical problems can be solved with mixed-integer linear methods, there are problems occurring in the engineering area that are modelled as mixed-integer nonlinear programming (MINLP) problems. When they contain nonconvex functions then they are the most difficult of all since they combine all the difficulties arising from the two sub-classes: mixed-integer linear programming and nonconvex nonlinear programming (NLP). Efficient deterministic methods for solving MINLP are clever combinations of Branch-and-Bound (B&B) and Outer-Approximations classes. When solving nonconvex NLP relaxation problems that arise in the nodes of a tree in a B&B algorithm, using local search methods, only convergence to local optimal solutions is guaranteed. Pruning criteria cannot be used to avoid an exhaustive search in the solution space. To address this issue, we propose the use of a simulated annealing algorithm to guarantee convergence, at least with probability one, to a global optimum of the nonconvex NLP relaxation problem. We present some preliminary tests with our algorithm.
publishDate 2010
dc.date.none.fl_str_mv 2010
2010-01-01T00:00:00Z
dc.type.driver.fl_str_mv conference paper
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/14290
url http://hdl.handle.net/1822/14290
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://lemac1.dem.ist.utl.pt/engopt2010/Book_and_CD/Papers_CD_Final_Version/html/papers.html
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade de Lisboa. Instituto Superior Técnico (IST)
publisher.none.fl_str_mv Universidade de Lisboa. Instituto Superior Técnico (IST)
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595163025342464