Export Ready — 

Numerical experiments with nonconvex MINLP problems

Bibliographic Details
Main Author: Costa, M. Fernanda P.
Publication Date: 2010
Other Authors: Fernandes, Florbela P., Fernandes, Edite Manuela da G. P.
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/1822/16506
Summary: We present a methodology to solve nonconvex Mixed-Integer Nonlinear Programming problems, that combines the Branch-and-Bound and simulated annealing type methods, which was implemented in MATLAB. A set of benchmark functions with simple bounds and different dimensions was used to analyze its practical behaviour. We exhibit computational results showing the good performance of the method.
id RCAP_91dd5a49f95dc8f9c8e4ee366d0b9ce2
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/16506
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Numerical experiments with nonconvex MINLP problemsMixed-integer programmingBranch-and-boundStochastic methodScience & TechnologyWe present a methodology to solve nonconvex Mixed-Integer Nonlinear Programming problems, that combines the Branch-and-Bound and simulated annealing type methods, which was implemented in MATLAB. A set of benchmark functions with simple bounds and different dimensions was used to analyze its practical behaviour. We exhibit computational results showing the good performance of the method.Fundação para a Ciência e a Tecnologia (FCT)AIP PublishingUniversidade do MinhoCosta, M. Fernanda P.Fernandes, Florbela P.Fernandes, Edite Manuela da G. P.20102010-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/16506eng97807354083400094-243X10.1063/1.3498661info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:53:11Zoai:repositorium.sdum.uminho.pt:1822/16506Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:33:39.557679Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Numerical experiments with nonconvex MINLP problems
title Numerical experiments with nonconvex MINLP problems
spellingShingle Numerical experiments with nonconvex MINLP problems
Costa, M. Fernanda P.
Mixed-integer programming
Branch-and-bound
Stochastic method
Science & Technology
title_short Numerical experiments with nonconvex MINLP problems
title_full Numerical experiments with nonconvex MINLP problems
title_fullStr Numerical experiments with nonconvex MINLP problems
title_full_unstemmed Numerical experiments with nonconvex MINLP problems
title_sort Numerical experiments with nonconvex MINLP problems
author Costa, M. Fernanda P.
author_facet Costa, M. Fernanda P.
Fernandes, Florbela P.
Fernandes, Edite Manuela da G. P.
author_role author
author2 Fernandes, Florbela P.
Fernandes, Edite Manuela da G. P.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Costa, M. Fernanda P.
Fernandes, Florbela P.
Fernandes, Edite Manuela da G. P.
dc.subject.por.fl_str_mv Mixed-integer programming
Branch-and-bound
Stochastic method
Science & Technology
topic Mixed-integer programming
Branch-and-bound
Stochastic method
Science & Technology
description We present a methodology to solve nonconvex Mixed-Integer Nonlinear Programming problems, that combines the Branch-and-Bound and simulated annealing type methods, which was implemented in MATLAB. A set of benchmark functions with simple bounds and different dimensions was used to analyze its practical behaviour. We exhibit computational results showing the good performance of the method.
publishDate 2010
dc.date.none.fl_str_mv 2010
2010-01-01T00:00:00Z
dc.type.driver.fl_str_mv conference paper
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/16506
url http://hdl.handle.net/1822/16506
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 9780735408340
0094-243X
10.1063/1.3498661
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv AIP Publishing
publisher.none.fl_str_mv AIP Publishing
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595391785828352