Towards adaptive and transparent tourism recommendations: A survey
Main Author: | |
---|---|
Publication Date: | 2023 |
Other Authors: | , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/11328/4990 https://doi.org/10.1111/exsy.13400 |
Summary: | Crowdsourced data streams are popular and extremely valuable in several domains, namely in tourism. Tourism crowdsourcing platforms rely on past tourist and business inputs to provide tailored recommendations to current users in real time. The continuous, open, dynamic and non-curated nature of the crowd-originated data demands specific stream mining techniques to support online profiling, recommendation, change detection and adaptation, explanation and evaluation. The sought techniques must, not only, continuously improve and adapt profiles and models; but must also be transparent, overcome biases, prioritize preferences, master huge data volumes and all in real time. This article surveys the state-of-art of adaptive and explainable stream recommendation, extends the taxonomy of explainable recommendations from the offline to the stream-based scenario, and identifies future research opportunities. |
id |
RCAP_f5950911185f0b9f2c8bb827c71a0eb7 |
---|---|
oai_identifier_str |
oai:repositorio.upt.pt:11328/4990 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Towards adaptive and transparent tourism recommendations: A surveyAutoMLCrowdsourced dataData stream miningRecommendationTourismTransparencyCrowdsourced data streams are popular and extremely valuable in several domains, namely in tourism. Tourism crowdsourcing platforms rely on past tourist and business inputs to provide tailored recommendations to current users in real time. The continuous, open, dynamic and non-curated nature of the crowd-originated data demands specific stream mining techniques to support online profiling, recommendation, change detection and adaptation, explanation and evaluation. The sought techniques must, not only, continuously improve and adapt profiles and models; but must also be transparent, overcome biases, prioritize preferences, master huge data volumes and all in real time. This article surveys the state-of-art of adaptive and explainable stream recommendation, extends the taxonomy of explainable recommendations from the offline to the stream-based scenario, and identifies future research opportunities.Wiley2023-07-21T18:36:48Z2023-07-212023-07-18T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfLeal, F., Veloso, B., Malheiro, B., & Burguillo, J. C. (2023). Towards adaptive and transparent tourism recommendations: A survey. Expert Systems, (Published online: 18 july 2023), 1-18. https://doi.org/10.1111/exsy.13400. Repositório Institucional UPT. http://hdl.handle.net/11328/4990http://hdl.handle.net/11328/4990Leal, F., Veloso, B., Malheiro, B., & Burguillo, J. C. (2023). Towards adaptive and transparent tourism recommendations: A survey. Expert Systems, (Published online: 18 july 2023), 1-18. https://doi.org/10.1111/exsy.13400. Repositório Institucional UPT. http://hdl.handle.net/11328/4990http://hdl.handle.net/11328/4990https://doi.org/10.1111/exsy.13400eng1468-03940266-4720https://onlinelibrary.wiley.com/doi/10.1111/exsy.13400info:eu-repo/semantics/restrictedAccessinfo:eu-repo/semantics/openAccessVeloso, BrunoMalheiro, BeneditaBurguillo, Juan C.Leal, Fátimareponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-24T02:05:06Zoai:repositorio.upt.pt:11328/4990Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:32:02.935887Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Towards adaptive and transparent tourism recommendations: A survey |
title |
Towards adaptive and transparent tourism recommendations: A survey |
spellingShingle |
Towards adaptive and transparent tourism recommendations: A survey Veloso, Bruno AutoML Crowdsourced data Data stream mining Recommendation Tourism Transparency |
title_short |
Towards adaptive and transparent tourism recommendations: A survey |
title_full |
Towards adaptive and transparent tourism recommendations: A survey |
title_fullStr |
Towards adaptive and transparent tourism recommendations: A survey |
title_full_unstemmed |
Towards adaptive and transparent tourism recommendations: A survey |
title_sort |
Towards adaptive and transparent tourism recommendations: A survey |
author |
Veloso, Bruno |
author_facet |
Veloso, Bruno Malheiro, Benedita Burguillo, Juan C. Leal, Fátima |
author_role |
author |
author2 |
Malheiro, Benedita Burguillo, Juan C. Leal, Fátima |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Veloso, Bruno Malheiro, Benedita Burguillo, Juan C. Leal, Fátima |
dc.subject.por.fl_str_mv |
AutoML Crowdsourced data Data stream mining Recommendation Tourism Transparency |
topic |
AutoML Crowdsourced data Data stream mining Recommendation Tourism Transparency |
description |
Crowdsourced data streams are popular and extremely valuable in several domains, namely in tourism. Tourism crowdsourcing platforms rely on past tourist and business inputs to provide tailored recommendations to current users in real time. The continuous, open, dynamic and non-curated nature of the crowd-originated data demands specific stream mining techniques to support online profiling, recommendation, change detection and adaptation, explanation and evaluation. The sought techniques must, not only, continuously improve and adapt profiles and models; but must also be transparent, overcome biases, prioritize preferences, master huge data volumes and all in real time. This article surveys the state-of-art of adaptive and explainable stream recommendation, extends the taxonomy of explainable recommendations from the offline to the stream-based scenario, and identifies future research opportunities. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-21T18:36:48Z 2023-07-21 2023-07-18T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Leal, F., Veloso, B., Malheiro, B., & Burguillo, J. C. (2023). Towards adaptive and transparent tourism recommendations: A survey. Expert Systems, (Published online: 18 july 2023), 1-18. https://doi.org/10.1111/exsy.13400. Repositório Institucional UPT. http://hdl.handle.net/11328/4990 http://hdl.handle.net/11328/4990 Leal, F., Veloso, B., Malheiro, B., & Burguillo, J. C. (2023). Towards adaptive and transparent tourism recommendations: A survey. Expert Systems, (Published online: 18 july 2023), 1-18. https://doi.org/10.1111/exsy.13400. Repositório Institucional UPT. http://hdl.handle.net/11328/4990 http://hdl.handle.net/11328/4990 https://doi.org/10.1111/exsy.13400 |
identifier_str_mv |
Leal, F., Veloso, B., Malheiro, B., & Burguillo, J. C. (2023). Towards adaptive and transparent tourism recommendations: A survey. Expert Systems, (Published online: 18 july 2023), 1-18. https://doi.org/10.1111/exsy.13400. Repositório Institucional UPT. http://hdl.handle.net/11328/4990 |
url |
http://hdl.handle.net/11328/4990 https://doi.org/10.1111/exsy.13400 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1468-0394 0266-4720 https://onlinelibrary.wiley.com/doi/10.1111/exsy.13400 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/restrictedAccess info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
restrictedAccess openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833598157826555904 |