Towards adaptive and transparent tourism recommendations: A survey

Bibliographic Details
Main Author: Veloso, Bruno
Publication Date: 2023
Other Authors: Malheiro, Benedita, Burguillo, Juan C., Leal, Fátima
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/11328/4990
https://doi.org/10.1111/exsy.13400
Summary: Crowdsourced data streams are popular and extremely valuable in several domains, namely in tourism. Tourism crowdsourcing platforms rely on past tourist and business inputs to provide tailored recommendations to current users in real time. The continuous, open, dynamic and non-curated nature of the crowd-originated data demands specific stream mining techniques to support online profiling, recommendation, change detection and adaptation, explanation and evaluation. The sought techniques must, not only, continuously improve and adapt profiles and models; but must also be transparent, overcome biases, prioritize preferences, master huge data volumes and all in real time. This article surveys the state-of-art of adaptive and explainable stream recommendation, extends the taxonomy of explainable recommendations from the offline to the stream-based scenario, and identifies future research opportunities.
id RCAP_f5950911185f0b9f2c8bb827c71a0eb7
oai_identifier_str oai:repositorio.upt.pt:11328/4990
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Towards adaptive and transparent tourism recommendations: A surveyAutoMLCrowdsourced dataData stream miningRecommendationTourismTransparencyCrowdsourced data streams are popular and extremely valuable in several domains, namely in tourism. Tourism crowdsourcing platforms rely on past tourist and business inputs to provide tailored recommendations to current users in real time. The continuous, open, dynamic and non-curated nature of the crowd-originated data demands specific stream mining techniques to support online profiling, recommendation, change detection and adaptation, explanation and evaluation. The sought techniques must, not only, continuously improve and adapt profiles and models; but must also be transparent, overcome biases, prioritize preferences, master huge data volumes and all in real time. This article surveys the state-of-art of adaptive and explainable stream recommendation, extends the taxonomy of explainable recommendations from the offline to the stream-based scenario, and identifies future research opportunities.Wiley2023-07-21T18:36:48Z2023-07-212023-07-18T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfLeal, F., Veloso, B., Malheiro, B., & Burguillo, J. C. (2023). Towards adaptive and transparent tourism recommendations: A survey. Expert Systems, (Published online: 18 july 2023), 1-18. https://doi.org/10.1111/exsy.13400. Repositório Institucional UPT. http://hdl.handle.net/11328/4990http://hdl.handle.net/11328/4990Leal, F., Veloso, B., Malheiro, B., & Burguillo, J. C. (2023). Towards adaptive and transparent tourism recommendations: A survey. Expert Systems, (Published online: 18 july 2023), 1-18. https://doi.org/10.1111/exsy.13400. Repositório Institucional UPT. http://hdl.handle.net/11328/4990http://hdl.handle.net/11328/4990https://doi.org/10.1111/exsy.13400eng1468-03940266-4720https://onlinelibrary.wiley.com/doi/10.1111/exsy.13400info:eu-repo/semantics/restrictedAccessinfo:eu-repo/semantics/openAccessVeloso, BrunoMalheiro, BeneditaBurguillo, Juan C.Leal, Fátimareponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-24T02:05:06Zoai:repositorio.upt.pt:11328/4990Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:32:02.935887Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Towards adaptive and transparent tourism recommendations: A survey
title Towards adaptive and transparent tourism recommendations: A survey
spellingShingle Towards adaptive and transparent tourism recommendations: A survey
Veloso, Bruno
AutoML
Crowdsourced data
Data stream mining
Recommendation
Tourism
Transparency
title_short Towards adaptive and transparent tourism recommendations: A survey
title_full Towards adaptive and transparent tourism recommendations: A survey
title_fullStr Towards adaptive and transparent tourism recommendations: A survey
title_full_unstemmed Towards adaptive and transparent tourism recommendations: A survey
title_sort Towards adaptive and transparent tourism recommendations: A survey
author Veloso, Bruno
author_facet Veloso, Bruno
Malheiro, Benedita
Burguillo, Juan C.
Leal, Fátima
author_role author
author2 Malheiro, Benedita
Burguillo, Juan C.
Leal, Fátima
author2_role author
author
author
dc.contributor.author.fl_str_mv Veloso, Bruno
Malheiro, Benedita
Burguillo, Juan C.
Leal, Fátima
dc.subject.por.fl_str_mv AutoML
Crowdsourced data
Data stream mining
Recommendation
Tourism
Transparency
topic AutoML
Crowdsourced data
Data stream mining
Recommendation
Tourism
Transparency
description Crowdsourced data streams are popular and extremely valuable in several domains, namely in tourism. Tourism crowdsourcing platforms rely on past tourist and business inputs to provide tailored recommendations to current users in real time. The continuous, open, dynamic and non-curated nature of the crowd-originated data demands specific stream mining techniques to support online profiling, recommendation, change detection and adaptation, explanation and evaluation. The sought techniques must, not only, continuously improve and adapt profiles and models; but must also be transparent, overcome biases, prioritize preferences, master huge data volumes and all in real time. This article surveys the state-of-art of adaptive and explainable stream recommendation, extends the taxonomy of explainable recommendations from the offline to the stream-based scenario, and identifies future research opportunities.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-21T18:36:48Z
2023-07-21
2023-07-18T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Leal, F., Veloso, B., Malheiro, B., & Burguillo, J. C. (2023). Towards adaptive and transparent tourism recommendations: A survey. Expert Systems, (Published online: 18 july 2023), 1-18. https://doi.org/10.1111/exsy.13400. Repositório Institucional UPT. http://hdl.handle.net/11328/4990
http://hdl.handle.net/11328/4990
Leal, F., Veloso, B., Malheiro, B., & Burguillo, J. C. (2023). Towards adaptive and transparent tourism recommendations: A survey. Expert Systems, (Published online: 18 july 2023), 1-18. https://doi.org/10.1111/exsy.13400. Repositório Institucional UPT. http://hdl.handle.net/11328/4990
http://hdl.handle.net/11328/4990
https://doi.org/10.1111/exsy.13400
identifier_str_mv Leal, F., Veloso, B., Malheiro, B., & Burguillo, J. C. (2023). Towards adaptive and transparent tourism recommendations: A survey. Expert Systems, (Published online: 18 july 2023), 1-18. https://doi.org/10.1111/exsy.13400. Repositório Institucional UPT. http://hdl.handle.net/11328/4990
url http://hdl.handle.net/11328/4990
https://doi.org/10.1111/exsy.13400
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1468-0394
0266-4720
https://onlinelibrary.wiley.com/doi/10.1111/exsy.13400
dc.rights.driver.fl_str_mv info:eu-repo/semantics/restrictedAccess
info:eu-repo/semantics/openAccess
eu_rights_str_mv restrictedAccess
openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598157826555904