A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparency

Detalhes bibliográficos
Autor(a) principal: Veloso, Bruno
Data de Publicação: 2020
Outros Autores: Malheiro, Benedita, Burguillo, Juan Carlos, Leal, Fátima
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/11328/4051
https://doi.org/10.1016/j.elerap.2020.100957
Resumo: Tourism crowdsourcing platforms accumulate and use large volumes of feedback data on tourism-related services to provide personalized recommendations with high impact on future tourist behavior. Typically, these recommendation engines build individual tourist profiles and suggest hotels, restaurants, attractions or routes based on the shared ratings, reviews, photos, videos or likes. Due to the dynamic nature of this scenario, where the crowd produces a continuous stream of events, we have been exploring stream-based recommendation methods, using stochastic gradient descent (SGD), to incrementally update the prediction models and post-filters to reduce the search space and improve the recommendation accuracy. In this context, we offer an update and comment on our previous article (Veloso et al., 2019a) by providing a recent literature review and identifying the challenges laying ahead concerning the online recommendation of tourism resources supported by crowdsourced data.
id RCAP_99151bf5a668a04aec43a85971f487b9
oai_identifier_str oai:repositorio.upt.pt:11328/4051
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparencyData stream miningProfilingRecommendationPost-filteringTourism crowdsourcing platforms accumulate and use large volumes of feedback data on tourism-related services to provide personalized recommendations with high impact on future tourist behavior. Typically, these recommendation engines build individual tourist profiles and suggest hotels, restaurants, attractions or routes based on the shared ratings, reviews, photos, videos or likes. Due to the dynamic nature of this scenario, where the crowd produces a continuous stream of events, we have been exploring stream-based recommendation methods, using stochastic gradient descent (SGD), to incrementally update the prediction models and post-filters to reduce the search space and improve the recommendation accuracy. In this context, we offer an update and comment on our previous article (Veloso et al., 2019a) by providing a recent literature review and identifying the challenges laying ahead concerning the online recommendation of tourism resources supported by crowdsourced data.2022-04-28T11:24:01Z2022-04-282020-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfVeloso, B., Leal, F., Malheiro, B., & Burguillo, J. C. (2020). A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparency. Electronic Commerce Research and Applications, 40(March–April 2020), 100957. https://doi.org/10.1016/j.elerap.2020.100957. Repositório Institucional UPT. http://hdl.handle.net/11328/4051http://hdl.handle.net/11328/4051Veloso, B., Leal, F., Malheiro, B., & Burguillo, J. C. (2020). A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparency. Electronic Commerce Research and Applications, 40(March–April 2020), 100957. https://doi.org/10.1016/j.elerap.2020.100957. Repositório Institucional UPT. http://hdl.handle.net/11328/4051http://hdl.handle.net/11328/4051https://doi.org/10.1016/j.elerap.2020.100957eng1567-4223 (Print)https://www.sciencedirect.com/science/article/pii/S156742232030034Xinfo:eu-repo/semantics/restrictedAccessinfo:eu-repo/semantics/openAccessVeloso, BrunoMalheiro, BeneditaBurguillo, Juan CarlosLeal, Fátimareponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-24T02:04:48Zoai:repositorio.upt.pt:11328/4051Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:31:30.524246Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparency
title A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparency
spellingShingle A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparency
Veloso, Bruno
Data stream mining
Profiling
Recommendation
Post-filtering
title_short A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparency
title_full A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparency
title_fullStr A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparency
title_full_unstemmed A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparency
title_sort A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparency
author Veloso, Bruno
author_facet Veloso, Bruno
Malheiro, Benedita
Burguillo, Juan Carlos
Leal, Fátima
author_role author
author2 Malheiro, Benedita
Burguillo, Juan Carlos
Leal, Fátima
author2_role author
author
author
dc.contributor.author.fl_str_mv Veloso, Bruno
Malheiro, Benedita
Burguillo, Juan Carlos
Leal, Fátima
dc.subject.por.fl_str_mv Data stream mining
Profiling
Recommendation
Post-filtering
topic Data stream mining
Profiling
Recommendation
Post-filtering
description Tourism crowdsourcing platforms accumulate and use large volumes of feedback data on tourism-related services to provide personalized recommendations with high impact on future tourist behavior. Typically, these recommendation engines build individual tourist profiles and suggest hotels, restaurants, attractions or routes based on the shared ratings, reviews, photos, videos or likes. Due to the dynamic nature of this scenario, where the crowd produces a continuous stream of events, we have been exploring stream-based recommendation methods, using stochastic gradient descent (SGD), to incrementally update the prediction models and post-filters to reduce the search space and improve the recommendation accuracy. In this context, we offer an update and comment on our previous article (Veloso et al., 2019a) by providing a recent literature review and identifying the challenges laying ahead concerning the online recommendation of tourism resources supported by crowdsourced data.
publishDate 2020
dc.date.none.fl_str_mv 2020-04-01T00:00:00Z
2022-04-28T11:24:01Z
2022-04-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Veloso, B., Leal, F., Malheiro, B., & Burguillo, J. C. (2020). A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparency. Electronic Commerce Research and Applications, 40(March–April 2020), 100957. https://doi.org/10.1016/j.elerap.2020.100957. Repositório Institucional UPT. http://hdl.handle.net/11328/4051
http://hdl.handle.net/11328/4051
Veloso, B., Leal, F., Malheiro, B., & Burguillo, J. C. (2020). A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparency. Electronic Commerce Research and Applications, 40(March–April 2020), 100957. https://doi.org/10.1016/j.elerap.2020.100957. Repositório Institucional UPT. http://hdl.handle.net/11328/4051
http://hdl.handle.net/11328/4051
https://doi.org/10.1016/j.elerap.2020.100957
identifier_str_mv Veloso, B., Leal, F., Malheiro, B., & Burguillo, J. C. (2020). A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparency. Electronic Commerce Research and Applications, 40(March–April 2020), 100957. https://doi.org/10.1016/j.elerap.2020.100957. Repositório Institucional UPT. http://hdl.handle.net/11328/4051
url http://hdl.handle.net/11328/4051
https://doi.org/10.1016/j.elerap.2020.100957
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1567-4223 (Print)
https://www.sciencedirect.com/science/article/pii/S156742232030034X
dc.rights.driver.fl_str_mv info:eu-repo/semantics/restrictedAccess
info:eu-repo/semantics/openAccess
eu_rights_str_mv restrictedAccess
openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598150425706496