Crowdsourced data stream mining for tourism recommendation

Bibliographic Details
Main Author: Veloso, Bruno
Publication Date: 2021
Other Authors: Malheiro, Benedita, Burguillo, Juan C., Leal, Fátima
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/11328/3502
https://doi.org/10.1007/978-3-030-72657-7_25
Summary: Crowdsourced data streams are continuous flows of data generated at high rate by users, also known as the crowd. These data streams are popular and extremely valuable in several domains. This is the case of tourism, where crowdsourcing platforms rely on tourist and business inputs to provide tailored recommendations to future tourists in real time. The continuous, open and non-curated nature of the crowd-originated data requires robust data stream mining techniques for on-line profiling, recommendation and evaluation. The sought techniques need, not only, to continuously improve profiles and learn models, but also be transparent, overcome biases, prioritise preferences, and master huge data volumes; all in real time. This article surveys the state-of-art in this field, and identifies future research opportunities.
id RCAP_1b4173f54c886634b7774d6f973d06a0
oai_identifier_str oai:repositorio.upt.pt:11328/3502
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Crowdsourced data stream mining for tourism recommendationCrowdsourced data streamsData stream miningProfilingRecommendationTourismCrowdsourced data streams are continuous flows of data generated at high rate by users, also known as the crowd. These data streams are popular and extremely valuable in several domains. This is the case of tourism, where crowdsourcing platforms rely on tourist and business inputs to provide tailored recommendations to future tourists in real time. The continuous, open and non-curated nature of the crowd-originated data requires robust data stream mining techniques for on-line profiling, recommendation and evaluation. The sought techniques need, not only, to continuously improve profiles and learn models, but also be transparent, overcome biases, prioritise preferences, and master huge data volumes; all in real time. This article surveys the state-of-art in this field, and identifies future research opportunities.Springer2021-04-29T14:43:16Z2021-04-292021-04-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfLeal F., Veloso B., Malheiro B.,& Burguillo J.C. (2021). Crowdsourced Data Stream Mining for Tourism Recommendation. In: Rocha Á., Adeli H., Dzemyda G., Moreira F., & Ramalho Correia A.M. (eds) Trends and Applications in Information Systems and Technologies, WorldCIST 2021. Advances in Intelligent Systems and Computing (1365, pp. 160-169). Doi:10.1007/978-3-030-72657-7_25. Disponível no Repositório UPT, http://hdl.handle.net/11328/3502http://hdl.handle.net/11328/3502Leal F., Veloso B., Malheiro B.,& Burguillo J.C. (2021). Crowdsourced Data Stream Mining for Tourism Recommendation. In: Rocha Á., Adeli H., Dzemyda G., Moreira F., & Ramalho Correia A.M. (eds) Trends and Applications in Information Systems and Technologies, WorldCIST 2021. Advances in Intelligent Systems and Computing (1365, pp. 160-169). Doi:10.1007/978-3-030-72657-7_25. Disponível no Repositório UPT, http://hdl.handle.net/11328/3502http://hdl.handle.net/11328/3502https://doi.org/10.1007/978-3-030-72657-7_25eng978-3-030-72657-7https://link.springer.com/chapter/10.1007/978-3-030-72657-7_25#citeashttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessVeloso, BrunoMalheiro, BeneditaBurguillo, Juan C.Leal, Fátimareponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-09T02:14:49Zoai:repositorio.upt.pt:11328/3502Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:32:50.769979Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Crowdsourced data stream mining for tourism recommendation
title Crowdsourced data stream mining for tourism recommendation
spellingShingle Crowdsourced data stream mining for tourism recommendation
Veloso, Bruno
Crowdsourced data streams
Data stream mining
Profiling
Recommendation
Tourism
title_short Crowdsourced data stream mining for tourism recommendation
title_full Crowdsourced data stream mining for tourism recommendation
title_fullStr Crowdsourced data stream mining for tourism recommendation
title_full_unstemmed Crowdsourced data stream mining for tourism recommendation
title_sort Crowdsourced data stream mining for tourism recommendation
author Veloso, Bruno
author_facet Veloso, Bruno
Malheiro, Benedita
Burguillo, Juan C.
Leal, Fátima
author_role author
author2 Malheiro, Benedita
Burguillo, Juan C.
Leal, Fátima
author2_role author
author
author
dc.contributor.author.fl_str_mv Veloso, Bruno
Malheiro, Benedita
Burguillo, Juan C.
Leal, Fátima
dc.subject.por.fl_str_mv Crowdsourced data streams
Data stream mining
Profiling
Recommendation
Tourism
topic Crowdsourced data streams
Data stream mining
Profiling
Recommendation
Tourism
description Crowdsourced data streams are continuous flows of data generated at high rate by users, also known as the crowd. These data streams are popular and extremely valuable in several domains. This is the case of tourism, where crowdsourcing platforms rely on tourist and business inputs to provide tailored recommendations to future tourists in real time. The continuous, open and non-curated nature of the crowd-originated data requires robust data stream mining techniques for on-line profiling, recommendation and evaluation. The sought techniques need, not only, to continuously improve profiles and learn models, but also be transparent, overcome biases, prioritise preferences, and master huge data volumes; all in real time. This article surveys the state-of-art in this field, and identifies future research opportunities.
publishDate 2021
dc.date.none.fl_str_mv 2021-04-29T14:43:16Z
2021-04-29
2021-04-01T00:00:00Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv Leal F., Veloso B., Malheiro B.,& Burguillo J.C. (2021). Crowdsourced Data Stream Mining for Tourism Recommendation. In: Rocha Á., Adeli H., Dzemyda G., Moreira F., & Ramalho Correia A.M. (eds) Trends and Applications in Information Systems and Technologies, WorldCIST 2021. Advances in Intelligent Systems and Computing (1365, pp. 160-169). Doi:10.1007/978-3-030-72657-7_25. Disponível no Repositório UPT, http://hdl.handle.net/11328/3502
http://hdl.handle.net/11328/3502
Leal F., Veloso B., Malheiro B.,& Burguillo J.C. (2021). Crowdsourced Data Stream Mining for Tourism Recommendation. In: Rocha Á., Adeli H., Dzemyda G., Moreira F., & Ramalho Correia A.M. (eds) Trends and Applications in Information Systems and Technologies, WorldCIST 2021. Advances in Intelligent Systems and Computing (1365, pp. 160-169). Doi:10.1007/978-3-030-72657-7_25. Disponível no Repositório UPT, http://hdl.handle.net/11328/3502
http://hdl.handle.net/11328/3502
https://doi.org/10.1007/978-3-030-72657-7_25
identifier_str_mv Leal F., Veloso B., Malheiro B.,& Burguillo J.C. (2021). Crowdsourced Data Stream Mining for Tourism Recommendation. In: Rocha Á., Adeli H., Dzemyda G., Moreira F., & Ramalho Correia A.M. (eds) Trends and Applications in Information Systems and Technologies, WorldCIST 2021. Advances in Intelligent Systems and Computing (1365, pp. 160-169). Doi:10.1007/978-3-030-72657-7_25. Disponível no Repositório UPT, http://hdl.handle.net/11328/3502
url http://hdl.handle.net/11328/3502
https://doi.org/10.1007/978-3-030-72657-7_25
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-3-030-72657-7
https://link.springer.com/chapter/10.1007/978-3-030-72657-7_25#citeas
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598164990427136