m-step preconditioners for nonhermitian positive definite Toeplitz systems
Main Author: | |
---|---|
Publication Date: | 2016 |
Other Authors: | , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/1822/50409 |
Summary: | It is known that if A is a Toeplitz matrix,then A enjoys a circulant and skew circulant splitting(de— noted by CSCS),i.e.,A=C+ S with C a circulant matrix and S a skew circulant matrix. Based on the CSCS iteration,we give m-step preconditioners P for certain classes of Toeplitz matrices in this paper.We show that if both C and S are positive definite,then the spectrum of the preconditioned matrix(PA)^* PA are clustered around one for some moderate size . Experimental results show that the proposed preconditioners perform slightly better than T.Chan’S preconditioners for some moderate size m. |
id |
RCAP_e616c6aced76d41bf2ad07f65448c9b5 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/50409 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
m-step preconditioners for nonhermitian positive definite Toeplitz systemsCirculantSkew circulant splittingm-step polynomial preconditionersConjugate gradientmethodToeplitz matrixCiências Naturais::MatemáticasIt is known that if A is a Toeplitz matrix,then A enjoys a circulant and skew circulant splitting(de— noted by CSCS),i.e.,A=C+ S with C a circulant matrix and S a skew circulant matrix. Based on the CSCS iteration,we give m-step preconditioners P for certain classes of Toeplitz matrices in this paper.We show that if both C and S are positive definite,then the spectrum of the preconditioned matrix(PA)^* PA are clustered around one for some moderate size . Experimental results show that the proposed preconditioners perform slightly better than T.Chan’S preconditioners for some moderate size m.info:eu-repo/semantics/publishedVersionMathematics Society of HunanUniversidade do MinhoLiu, ZhongyunYu, JingZhang, YanZhang, Yulin20162016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/50409eng1006-8074info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T04:52:11Zoai:repositorium.sdum.uminho.pt:1822/50409Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:01:04.116318Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
m-step preconditioners for nonhermitian positive definite Toeplitz systems |
title |
m-step preconditioners for nonhermitian positive definite Toeplitz systems |
spellingShingle |
m-step preconditioners for nonhermitian positive definite Toeplitz systems Liu, Zhongyun Circulant Skew circulant splitting m-step polynomial preconditioners Conjugate gradientmethod Toeplitz matrix Ciências Naturais::Matemáticas |
title_short |
m-step preconditioners for nonhermitian positive definite Toeplitz systems |
title_full |
m-step preconditioners for nonhermitian positive definite Toeplitz systems |
title_fullStr |
m-step preconditioners for nonhermitian positive definite Toeplitz systems |
title_full_unstemmed |
m-step preconditioners for nonhermitian positive definite Toeplitz systems |
title_sort |
m-step preconditioners for nonhermitian positive definite Toeplitz systems |
author |
Liu, Zhongyun |
author_facet |
Liu, Zhongyun Yu, Jing Zhang, Yan Zhang, Yulin |
author_role |
author |
author2 |
Yu, Jing Zhang, Yan Zhang, Yulin |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Liu, Zhongyun Yu, Jing Zhang, Yan Zhang, Yulin |
dc.subject.por.fl_str_mv |
Circulant Skew circulant splitting m-step polynomial preconditioners Conjugate gradientmethod Toeplitz matrix Ciências Naturais::Matemáticas |
topic |
Circulant Skew circulant splitting m-step polynomial preconditioners Conjugate gradientmethod Toeplitz matrix Ciências Naturais::Matemáticas |
description |
It is known that if A is a Toeplitz matrix,then A enjoys a circulant and skew circulant splitting(de— noted by CSCS),i.e.,A=C+ S with C a circulant matrix and S a skew circulant matrix. Based on the CSCS iteration,we give m-step preconditioners P for certain classes of Toeplitz matrices in this paper.We show that if both C and S are positive definite,then the spectrum of the preconditioned matrix(PA)^* PA are clustered around one for some moderate size . Experimental results show that the proposed preconditioners perform slightly better than T.Chan’S preconditioners for some moderate size m. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2016-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/50409 |
url |
http://hdl.handle.net/1822/50409 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1006-8074 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Mathematics Society of Hunan |
publisher.none.fl_str_mv |
Mathematics Society of Hunan |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833595043885088768 |