Realizable lists on a class of nonnegative matrices
Main Author: | |
---|---|
Publication Date: | 2018 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/23002 |
Summary: | A square matrix of order $n$ with $n\geq 2$ is called \textit{permutative matrix} when all its rows are permutations of the first row. In this paper recalling spectral results for partitioned into $2$-by-$2$ symmetric blocks matrices sufficient conditions on a given complex list to be the list of the eigenvalues of a nonnegative permutative matrix are given. In particular, we study NIEP and PNIEP when some complex elements in the lists under consideration have non-zero imaginary part. Realizability regions for nonnegative permutative matrices are obtained. A Guo's realizability-preserving perturbations result is obtained. |
id |
RCAP_8b9fb4148e2219cd1c91cd242c649e36 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/23002 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Realizable lists on a class of nonnegative matricesPermutative matrixInverse eigenvalue problemNonnegative matrixCirculant matrixSkew circulant matrixGuo perturbationsA square matrix of order $n$ with $n\geq 2$ is called \textit{permutative matrix} when all its rows are permutations of the first row. In this paper recalling spectral results for partitioned into $2$-by-$2$ symmetric blocks matrices sufficient conditions on a given complex list to be the list of the eigenvalues of a nonnegative permutative matrix are given. In particular, we study NIEP and PNIEP when some complex elements in the lists under consideration have non-zero imaginary part. Realizability regions for nonnegative permutative matrices are obtained. A Guo's realizability-preserving perturbations result is obtained.Elsevier2018-08-152018-08-15T00:00:00Z2019-02-11T09:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/23002eng0024-379510.1016/j.laa.2018.04.004Andrade, EnideManzaneda, CristinaRobbiano, Maríainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:14:16Zoai:ria.ua.pt:10773/23002Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:01:39.780081Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Realizable lists on a class of nonnegative matrices |
title |
Realizable lists on a class of nonnegative matrices |
spellingShingle |
Realizable lists on a class of nonnegative matrices Andrade, Enide Permutative matrix Inverse eigenvalue problem Nonnegative matrix Circulant matrix Skew circulant matrix Guo perturbations |
title_short |
Realizable lists on a class of nonnegative matrices |
title_full |
Realizable lists on a class of nonnegative matrices |
title_fullStr |
Realizable lists on a class of nonnegative matrices |
title_full_unstemmed |
Realizable lists on a class of nonnegative matrices |
title_sort |
Realizable lists on a class of nonnegative matrices |
author |
Andrade, Enide |
author_facet |
Andrade, Enide Manzaneda, Cristina Robbiano, María |
author_role |
author |
author2 |
Manzaneda, Cristina Robbiano, María |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Andrade, Enide Manzaneda, Cristina Robbiano, María |
dc.subject.por.fl_str_mv |
Permutative matrix Inverse eigenvalue problem Nonnegative matrix Circulant matrix Skew circulant matrix Guo perturbations |
topic |
Permutative matrix Inverse eigenvalue problem Nonnegative matrix Circulant matrix Skew circulant matrix Guo perturbations |
description |
A square matrix of order $n$ with $n\geq 2$ is called \textit{permutative matrix} when all its rows are permutations of the first row. In this paper recalling spectral results for partitioned into $2$-by-$2$ symmetric blocks matrices sufficient conditions on a given complex list to be the list of the eigenvalues of a nonnegative permutative matrix are given. In particular, we study NIEP and PNIEP when some complex elements in the lists under consideration have non-zero imaginary part. Realizability regions for nonnegative permutative matrices are obtained. A Guo's realizability-preserving perturbations result is obtained. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-08-15 2018-08-15T00:00:00Z 2019-02-11T09:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/23002 |
url |
http://hdl.handle.net/10773/23002 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0024-3795 10.1016/j.laa.2018.04.004 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594234145341440 |