The eigen-structures of real (skew) circulant matrices with some applications
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Texto Completo: | https://hdl.handle.net/1822/62618 |
Resumo: | The circulant matrices and skew-circulant matrices are two special classes of Toeplitz matrices and play vital roles in the computation of Toeplitz matrices. In this paper, we focus on real circulant and skew-circulant matrices. We first investigate their real Schur forms, which are closely related to the family of discrete cosine transform (DCT) and discrete sine transform (DST). Using those real Schur forms, we then develop some fast algorithms for computing real circulant, skew-circulant and Toeplitz matrix-real vector multiplications. Also, we develop a DCT-DST version of circulant and skew-circulant splitting (CSCS) iteration for real positive definite Toeplitz systems. Compared with the fast Fourier transform (FFT) version of CSCS iteration, the DCT-DST version is more efficient and saves a half storage. Numerical experiments are presented to illustrate the effectiveness of our method. |
id |
RCAP_97b7f9be98bd83cc3017d80645096e55 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/62618 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
The eigen-structures of real (skew) circulant matrices with some applicationsReal Schur formReal circulant matricesReal skew-circulant matricesCSCS iterationReal Toeplitz matricesCiências Naturais::MatemáticasScience & TechnologyThe circulant matrices and skew-circulant matrices are two special classes of Toeplitz matrices and play vital roles in the computation of Toeplitz matrices. In this paper, we focus on real circulant and skew-circulant matrices. We first investigate their real Schur forms, which are closely related to the family of discrete cosine transform (DCT) and discrete sine transform (DST). Using those real Schur forms, we then develop some fast algorithms for computing real circulant, skew-circulant and Toeplitz matrix-real vector multiplications. Also, we develop a DCT-DST version of circulant and skew-circulant splitting (CSCS) iteration for real positive definite Toeplitz systems. Compared with the fast Fourier transform (FFT) version of CSCS iteration, the DCT-DST version is more efficient and saves a half storage. Numerical experiments are presented to illustrate the effectiveness of our method.The authors would like to thank the supports of the National Natural Science Foundationof China under Grant No. 11371075, the Hunan Key Laboratory of Mathematical Modeling and Analysis inEngineering, and the Portuguese Funds through FCT-Fundação para a Ciência, within the Project UID/ MAT/00013/2013.Springer NatureUniversidade do MinhoLiu, ZhongyunChen, SihengXu, WeijinZhang, Yulin20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/62618eng2238-36031807-030210.1007/s40314-019-0971-9https://link.springer.com/article/10.1007/s40314-019-0971-9info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:02:21Zoai:repositorium.sdum.uminho.pt:1822/62618Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:06:20.352288Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
The eigen-structures of real (skew) circulant matrices with some applications |
title |
The eigen-structures of real (skew) circulant matrices with some applications |
spellingShingle |
The eigen-structures of real (skew) circulant matrices with some applications Liu, Zhongyun Real Schur form Real circulant matrices Real skew-circulant matrices CSCS iteration Real Toeplitz matrices Ciências Naturais::Matemáticas Science & Technology |
title_short |
The eigen-structures of real (skew) circulant matrices with some applications |
title_full |
The eigen-structures of real (skew) circulant matrices with some applications |
title_fullStr |
The eigen-structures of real (skew) circulant matrices with some applications |
title_full_unstemmed |
The eigen-structures of real (skew) circulant matrices with some applications |
title_sort |
The eigen-structures of real (skew) circulant matrices with some applications |
author |
Liu, Zhongyun |
author_facet |
Liu, Zhongyun Chen, Siheng Xu, Weijin Zhang, Yulin |
author_role |
author |
author2 |
Chen, Siheng Xu, Weijin Zhang, Yulin |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Liu, Zhongyun Chen, Siheng Xu, Weijin Zhang, Yulin |
dc.subject.por.fl_str_mv |
Real Schur form Real circulant matrices Real skew-circulant matrices CSCS iteration Real Toeplitz matrices Ciências Naturais::Matemáticas Science & Technology |
topic |
Real Schur form Real circulant matrices Real skew-circulant matrices CSCS iteration Real Toeplitz matrices Ciências Naturais::Matemáticas Science & Technology |
description |
The circulant matrices and skew-circulant matrices are two special classes of Toeplitz matrices and play vital roles in the computation of Toeplitz matrices. In this paper, we focus on real circulant and skew-circulant matrices. We first investigate their real Schur forms, which are closely related to the family of discrete cosine transform (DCT) and discrete sine transform (DST). Using those real Schur forms, we then develop some fast algorithms for computing real circulant, skew-circulant and Toeplitz matrix-real vector multiplications. Also, we develop a DCT-DST version of circulant and skew-circulant splitting (CSCS) iteration for real positive definite Toeplitz systems. Compared with the fast Fourier transform (FFT) version of CSCS iteration, the DCT-DST version is more efficient and saves a half storage. Numerical experiments are presented to illustrate the effectiveness of our method. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 2019-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/62618 |
url |
https://hdl.handle.net/1822/62618 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2238-3603 1807-0302 10.1007/s40314-019-0971-9 https://link.springer.com/article/10.1007/s40314-019-0971-9 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Nature |
publisher.none.fl_str_mv |
Springer Nature |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833595102601150464 |