Tilings and Anosov diffeomorphisms

Bibliographic Details
Main Author: Almeida, João P.
Publication Date: 2009
Other Authors: Pinto, Alberto A.
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10198/5106
Summary: A. Pinto and D. Sullivan [4] proved a one-to-one correspondence between: (i) C1+ conjugacy classes of expanding circle maps; (ii) solenoid functions and (iii) Pinto-Sullivan’s dyadic tilings on the real line. A. Pinto [1,3] introduced the notion of golden tilings and proved a one-to-one correspondence between (i) smooth conjugacy classes of Anosov diffeomorphisms, with an invariant measure absolutely continuous with respect to the Lebesgue measure, that are topologically conjugate to the linear automorphism G(x; y) = (x + y; x), (ii) affine classes of golden tilings and (iii) solenoid functions. Here we extend this last result and we exhibit a natural one-to-one correspondence between (i) smooth conjugacy classes of Anosov diffeomorphisms, with an invariant measure absolutely continuous with respect to the Lebesgue measure, that are topologically conjugate to the linear automorphism G(x; y) = (ax+y; ax), where a 2 N, (ii) affine classes of tilings in the real line and (iii) solenoid functions. The solenoid functions give a parametrization of the infinite dimensional space consisting of the mathematical objects described in the above equivalences.
id RCAP_d2aa0dd5a16b0d78d04c79c94da74326
oai_identifier_str oai:bibliotecadigital.ipb.pt:10198/5106
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Tilings and Anosov diffeomorphismsTilingsAnosov diffeomorphismsA. Pinto and D. Sullivan [4] proved a one-to-one correspondence between: (i) C1+ conjugacy classes of expanding circle maps; (ii) solenoid functions and (iii) Pinto-Sullivan’s dyadic tilings on the real line. A. Pinto [1,3] introduced the notion of golden tilings and proved a one-to-one correspondence between (i) smooth conjugacy classes of Anosov diffeomorphisms, with an invariant measure absolutely continuous with respect to the Lebesgue measure, that are topologically conjugate to the linear automorphism G(x; y) = (x + y; x), (ii) affine classes of golden tilings and (iii) solenoid functions. Here we extend this last result and we exhibit a natural one-to-one correspondence between (i) smooth conjugacy classes of Anosov diffeomorphisms, with an invariant measure absolutely continuous with respect to the Lebesgue measure, that are topologically conjugate to the linear automorphism G(x; y) = (ax+y; ax), where a 2 N, (ii) affine classes of tilings in the real line and (iii) solenoid functions. The solenoid functions give a parametrization of the infinite dimensional space consisting of the mathematical objects described in the above equivalences.Biblioteca Digital do IPBAlmeida, João P.Pinto, Alberto A.2011-06-13T08:58:58Z20092009-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10198/5106engAlmeida, João P.; Pinto, Alberto A. (2009). Tilings and Anosov diffeomorphisms. In International Conference on Difference Equations and Applications (ICDEA). Estoril, Portugal.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T11:58:05Zoai:bibliotecadigital.ipb.pt:10198/5106Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:21:01.647721Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Tilings and Anosov diffeomorphisms
title Tilings and Anosov diffeomorphisms
spellingShingle Tilings and Anosov diffeomorphisms
Almeida, João P.
Tilings
Anosov diffeomorphisms
title_short Tilings and Anosov diffeomorphisms
title_full Tilings and Anosov diffeomorphisms
title_fullStr Tilings and Anosov diffeomorphisms
title_full_unstemmed Tilings and Anosov diffeomorphisms
title_sort Tilings and Anosov diffeomorphisms
author Almeida, João P.
author_facet Almeida, João P.
Pinto, Alberto A.
author_role author
author2 Pinto, Alberto A.
author2_role author
dc.contributor.none.fl_str_mv Biblioteca Digital do IPB
dc.contributor.author.fl_str_mv Almeida, João P.
Pinto, Alberto A.
dc.subject.por.fl_str_mv Tilings
Anosov diffeomorphisms
topic Tilings
Anosov diffeomorphisms
description A. Pinto and D. Sullivan [4] proved a one-to-one correspondence between: (i) C1+ conjugacy classes of expanding circle maps; (ii) solenoid functions and (iii) Pinto-Sullivan’s dyadic tilings on the real line. A. Pinto [1,3] introduced the notion of golden tilings and proved a one-to-one correspondence between (i) smooth conjugacy classes of Anosov diffeomorphisms, with an invariant measure absolutely continuous with respect to the Lebesgue measure, that are topologically conjugate to the linear automorphism G(x; y) = (x + y; x), (ii) affine classes of golden tilings and (iii) solenoid functions. Here we extend this last result and we exhibit a natural one-to-one correspondence between (i) smooth conjugacy classes of Anosov diffeomorphisms, with an invariant measure absolutely continuous with respect to the Lebesgue measure, that are topologically conjugate to the linear automorphism G(x; y) = (ax+y; ax), where a 2 N, (ii) affine classes of tilings in the real line and (iii) solenoid functions. The solenoid functions give a parametrization of the infinite dimensional space consisting of the mathematical objects described in the above equivalences.
publishDate 2009
dc.date.none.fl_str_mv 2009
2009-01-01T00:00:00Z
2011-06-13T08:58:58Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10198/5106
url http://hdl.handle.net/10198/5106
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Almeida, João P.; Pinto, Alberto A. (2009). Tilings and Anosov diffeomorphisms. In International Conference on Difference Equations and Applications (ICDEA). Estoril, Portugal.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833591831238017024