Pinto's golden tilings

Bibliographic Details
Main Author: Almeida, João P.
Publication Date: 2010
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10198/8584
Summary: We present the definition of a golden sequence. These golden sequences are Fibonacci quasi-periodic and determine a tiling of the real line. We prove the existence of a natural one-to-one correspondence between: (i) Golden sequences; (ii) Smooth conjugacy classes of circle diffeomorphisms with golden rotation number that are smooth fixed points of renormalization, and (iii) Smooth conjugacy classes of Anosov diffeomorphisms that are topologicaly conjugate to the toral automorphism G_A=(x+y,x). The Pinto-Sullivan tilings of the real line relate smooth conjugacy classes of expanding circle maps with 2-adic sequences.
id RCAP_f4f08bc7752e11c0d26b6bc569f20542
oai_identifier_str oai:bibliotecadigital.ipb.pt:10198/8584
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Pinto's golden tilingsGolden tilingsRenormalizationAnosov diffeomorphismsWe present the definition of a golden sequence. These golden sequences are Fibonacci quasi-periodic and determine a tiling of the real line. We prove the existence of a natural one-to-one correspondence between: (i) Golden sequences; (ii) Smooth conjugacy classes of circle diffeomorphisms with golden rotation number that are smooth fixed points of renormalization, and (iii) Smooth conjugacy classes of Anosov diffeomorphisms that are topologicaly conjugate to the toral automorphism G_A=(x+y,x). The Pinto-Sullivan tilings of the real line relate smooth conjugacy classes of expanding circle maps with 2-adic sequences.Biblioteca Digital do IPBAlmeida, João P.2013-08-13T09:25:13Z20102010-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10198/8584engAlmeida, João P. (2010). Pinto's golden tilings. In EURO XXIV. Lisboa, Portugalinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T12:00:23Zoai:bibliotecadigital.ipb.pt:10198/8584Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:24:34.856554Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Pinto's golden tilings
title Pinto's golden tilings
spellingShingle Pinto's golden tilings
Almeida, João P.
Golden tilings
Renormalization
Anosov diffeomorphisms
title_short Pinto's golden tilings
title_full Pinto's golden tilings
title_fullStr Pinto's golden tilings
title_full_unstemmed Pinto's golden tilings
title_sort Pinto's golden tilings
author Almeida, João P.
author_facet Almeida, João P.
author_role author
dc.contributor.none.fl_str_mv Biblioteca Digital do IPB
dc.contributor.author.fl_str_mv Almeida, João P.
dc.subject.por.fl_str_mv Golden tilings
Renormalization
Anosov diffeomorphisms
topic Golden tilings
Renormalization
Anosov diffeomorphisms
description We present the definition of a golden sequence. These golden sequences are Fibonacci quasi-periodic and determine a tiling of the real line. We prove the existence of a natural one-to-one correspondence between: (i) Golden sequences; (ii) Smooth conjugacy classes of circle diffeomorphisms with golden rotation number that are smooth fixed points of renormalization, and (iii) Smooth conjugacy classes of Anosov diffeomorphisms that are topologicaly conjugate to the toral automorphism G_A=(x+y,x). The Pinto-Sullivan tilings of the real line relate smooth conjugacy classes of expanding circle maps with 2-adic sequences.
publishDate 2010
dc.date.none.fl_str_mv 2010
2010-01-01T00:00:00Z
2013-08-13T09:25:13Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10198/8584
url http://hdl.handle.net/10198/8584
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Almeida, João P. (2010). Pinto's golden tilings. In EURO XXIV. Lisboa, Portugal
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833591882444177408