Tilings and Anosov diffeomorphisms
Main Author: | |
---|---|
Publication Date: | 2009 |
Other Authors: | |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10198/5106 |
Summary: | A. Pinto and D. Sullivan [4] proved a one-to-one correspondence between: (i) C1+ conjugacy classes of expanding circle maps; (ii) solenoid functions and (iii) Pinto-Sullivan’s dyadic tilings on the real line. A. Pinto [1,3] introduced the notion of golden tilings and proved a one-to-one correspondence between (i) smooth conjugacy classes of Anosov diffeomorphisms, with an invariant measure absolutely continuous with respect to the Lebesgue measure, that are topologically conjugate to the linear automorphism G(x; y) = (x + y; x), (ii) affine classes of golden tilings and (iii) solenoid functions. Here we extend this last result and we exhibit a natural one-to-one correspondence between (i) smooth conjugacy classes of Anosov diffeomorphisms, with an invariant measure absolutely continuous with respect to the Lebesgue measure, that are topologically conjugate to the linear automorphism G(x; y) = (ax+y; ax), where a 2 N, (ii) affine classes of tilings in the real line and (iii) solenoid functions. The solenoid functions give a parametrization of the infinite dimensional space consisting of the mathematical objects described in the above equivalences. |
id |
RCAP_d2aa0dd5a16b0d78d04c79c94da74326 |
---|---|
oai_identifier_str |
oai:bibliotecadigital.ipb.pt:10198/5106 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Tilings and Anosov diffeomorphismsTilingsAnosov diffeomorphismsA. Pinto and D. Sullivan [4] proved a one-to-one correspondence between: (i) C1+ conjugacy classes of expanding circle maps; (ii) solenoid functions and (iii) Pinto-Sullivan’s dyadic tilings on the real line. A. Pinto [1,3] introduced the notion of golden tilings and proved a one-to-one correspondence between (i) smooth conjugacy classes of Anosov diffeomorphisms, with an invariant measure absolutely continuous with respect to the Lebesgue measure, that are topologically conjugate to the linear automorphism G(x; y) = (x + y; x), (ii) affine classes of golden tilings and (iii) solenoid functions. Here we extend this last result and we exhibit a natural one-to-one correspondence between (i) smooth conjugacy classes of Anosov diffeomorphisms, with an invariant measure absolutely continuous with respect to the Lebesgue measure, that are topologically conjugate to the linear automorphism G(x; y) = (ax+y; ax), where a 2 N, (ii) affine classes of tilings in the real line and (iii) solenoid functions. The solenoid functions give a parametrization of the infinite dimensional space consisting of the mathematical objects described in the above equivalences.Biblioteca Digital do IPBAlmeida, João P.Pinto, Alberto A.2011-06-13T08:58:58Z20092009-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10198/5106engAlmeida, João P.; Pinto, Alberto A. (2009). Tilings and Anosov diffeomorphisms. In International Conference on Difference Equations and Applications (ICDEA). Estoril, Portugal.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T11:58:05Zoai:bibliotecadigital.ipb.pt:10198/5106Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:21:01.647721Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Tilings and Anosov diffeomorphisms |
title |
Tilings and Anosov diffeomorphisms |
spellingShingle |
Tilings and Anosov diffeomorphisms Almeida, João P. Tilings Anosov diffeomorphisms |
title_short |
Tilings and Anosov diffeomorphisms |
title_full |
Tilings and Anosov diffeomorphisms |
title_fullStr |
Tilings and Anosov diffeomorphisms |
title_full_unstemmed |
Tilings and Anosov diffeomorphisms |
title_sort |
Tilings and Anosov diffeomorphisms |
author |
Almeida, João P. |
author_facet |
Almeida, João P. Pinto, Alberto A. |
author_role |
author |
author2 |
Pinto, Alberto A. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Biblioteca Digital do IPB |
dc.contributor.author.fl_str_mv |
Almeida, João P. Pinto, Alberto A. |
dc.subject.por.fl_str_mv |
Tilings Anosov diffeomorphisms |
topic |
Tilings Anosov diffeomorphisms |
description |
A. Pinto and D. Sullivan [4] proved a one-to-one correspondence between: (i) C1+ conjugacy classes of expanding circle maps; (ii) solenoid functions and (iii) Pinto-Sullivan’s dyadic tilings on the real line. A. Pinto [1,3] introduced the notion of golden tilings and proved a one-to-one correspondence between (i) smooth conjugacy classes of Anosov diffeomorphisms, with an invariant measure absolutely continuous with respect to the Lebesgue measure, that are topologically conjugate to the linear automorphism G(x; y) = (x + y; x), (ii) affine classes of golden tilings and (iii) solenoid functions. Here we extend this last result and we exhibit a natural one-to-one correspondence between (i) smooth conjugacy classes of Anosov diffeomorphisms, with an invariant measure absolutely continuous with respect to the Lebesgue measure, that are topologically conjugate to the linear automorphism G(x; y) = (ax+y; ax), where a 2 N, (ii) affine classes of tilings in the real line and (iii) solenoid functions. The solenoid functions give a parametrization of the infinite dimensional space consisting of the mathematical objects described in the above equivalences. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009 2009-01-01T00:00:00Z 2011-06-13T08:58:58Z |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10198/5106 |
url |
http://hdl.handle.net/10198/5106 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Almeida, João P.; Pinto, Alberto A. (2009). Tilings and Anosov diffeomorphisms. In International Conference on Difference Equations and Applications (ICDEA). Estoril, Portugal. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833591831238017024 |