On the structure of generalized Appell sequences of paravector valued homogeneous monogenic polynomials
Main Author: | |
---|---|
Publication Date: | 2012 |
Other Authors: | , |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/1822/22534 |
Summary: | The fact that generalized Appell sequences of monogenic polynomials in the setting of hypercomplex function theory also satisfy a corresponding binomial type theorem allows to obtain their explicit structure. Recently it has been obtained a complete characterization in the case of paravector valued homogeneous polynomials of three real variables. The aim of this contribution is the study of paravector valued homogeneous polynomials of four real variables, where new types of generalized Appell sequences could be detected. |
id |
RCAP_cb62b2f86ea4f31cb69a82ded4dae565 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/22534 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
On the structure of generalized Appell sequences of paravector valued homogeneous monogenic polynomialsHomogeneous monogenic polynomialsHypercomplex analysisAppell setsThe fact that generalized Appell sequences of monogenic polynomials in the setting of hypercomplex function theory also satisfy a corresponding binomial type theorem allows to obtain their explicit structure. Recently it has been obtained a complete characterization in the case of paravector valued homogeneous polynomials of three real variables. The aim of this contribution is the study of paravector valued homogeneous polynomials of four real variables, where new types of generalized Appell sequences could be detected.FCTUniversidade do MinhoCruz, CarlaFalcão, M. I.Malonek, H. R.20122012-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/22534eng978-0-7354-1091-60094-243X10.1063/1.4756118http://proceedings.aip.org/resource/2/apcpcs/1479/1/283_1info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T06:49:54Zoai:repositorium.sdum.uminho.pt:1822/22534Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:05:52.328410Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
On the structure of generalized Appell sequences of paravector valued homogeneous monogenic polynomials |
title |
On the structure of generalized Appell sequences of paravector valued homogeneous monogenic polynomials |
spellingShingle |
On the structure of generalized Appell sequences of paravector valued homogeneous monogenic polynomials Cruz, Carla Homogeneous monogenic polynomials Hypercomplex analysis Appell sets |
title_short |
On the structure of generalized Appell sequences of paravector valued homogeneous monogenic polynomials |
title_full |
On the structure of generalized Appell sequences of paravector valued homogeneous monogenic polynomials |
title_fullStr |
On the structure of generalized Appell sequences of paravector valued homogeneous monogenic polynomials |
title_full_unstemmed |
On the structure of generalized Appell sequences of paravector valued homogeneous monogenic polynomials |
title_sort |
On the structure of generalized Appell sequences of paravector valued homogeneous monogenic polynomials |
author |
Cruz, Carla |
author_facet |
Cruz, Carla Falcão, M. I. Malonek, H. R. |
author_role |
author |
author2 |
Falcão, M. I. Malonek, H. R. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Cruz, Carla Falcão, M. I. Malonek, H. R. |
dc.subject.por.fl_str_mv |
Homogeneous monogenic polynomials Hypercomplex analysis Appell sets |
topic |
Homogeneous monogenic polynomials Hypercomplex analysis Appell sets |
description |
The fact that generalized Appell sequences of monogenic polynomials in the setting of hypercomplex function theory also satisfy a corresponding binomial type theorem allows to obtain their explicit structure. Recently it has been obtained a complete characterization in the case of paravector valued homogeneous polynomials of three real variables. The aim of this contribution is the study of paravector valued homogeneous polynomials of four real variables, where new types of generalized Appell sequences could be detected. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 2012-01-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference paper |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/22534 |
url |
http://hdl.handle.net/1822/22534 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
978-0-7354-1091-6 0094-243X 10.1063/1.4756118 http://proceedings.aip.org/resource/2/apcpcs/1479/1/283_1 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833595734201466880 |