Matrix approach to hypercomplex Appell polynomials

Bibliographic Details
Main Author: Aceto, Lidia
Publication Date: 2017
Other Authors: Malonek, Helmuth, Tomaz, Graça
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10314/3907
https://doi.org/10.1016/j.apnum.2016.07.006
Summary: Recently the authors presented a matrix representation approach to real Appell polynomials essentially determined by a nilpotent matrix with natural number entries. It allows to consider a set of real Appell polynomials as solution of a suitable first order initial value problem. The paper aims to confirm that the unifying character of this approach can also be applied to the construction of homogeneous Appell polynomials that are solutions of a generalized Cauchy–Riemann system in Euclidean spaces of arbitrary dimension. The result contributes to the development of techniques for polynomial approximation and interpolation in non-commutative Hypercomplex Function Theories with Clifford algebras.
id RCAP_6b4f2031004e2ce9e6790baf87f727c7
oai_identifier_str oai:bdigital.ipg.pt:10314/3907
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Matrix approach to hypercomplex Appell polynomialsHypercomplex differentiabilityAppell polynomialsCreation matrixPascal matrixRecently the authors presented a matrix representation approach to real Appell polynomials essentially determined by a nilpotent matrix with natural number entries. It allows to consider a set of real Appell polynomials as solution of a suitable first order initial value problem. The paper aims to confirm that the unifying character of this approach can also be applied to the construction of homogeneous Appell polynomials that are solutions of a generalized Cauchy–Riemann system in Euclidean spaces of arbitrary dimension. The result contributes to the development of techniques for polynomial approximation and interpolation in non-commutative Hypercomplex Function Theories with Clifford algebras.CIDMA – Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal; UDI/IPG – Research Unit for Inland Development, 6300-559 Guarda, PortugalElsevier2018-03-14T01:03:41Z2018-03-142017-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10314/3907https://doi.org/10.1016/j.apnum.2016.07.006http://hdl.handle.net/10314/3907eng0168-9274Aceto, LidiaMalonek, HelmuthTomaz, Graçainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-05T02:59:54Zoai:bdigital.ipg.pt:10314/3907Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:25:02.483647Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Matrix approach to hypercomplex Appell polynomials
title Matrix approach to hypercomplex Appell polynomials
spellingShingle Matrix approach to hypercomplex Appell polynomials
Aceto, Lidia
Hypercomplex differentiability
Appell polynomials
Creation matrix
Pascal matrix
title_short Matrix approach to hypercomplex Appell polynomials
title_full Matrix approach to hypercomplex Appell polynomials
title_fullStr Matrix approach to hypercomplex Appell polynomials
title_full_unstemmed Matrix approach to hypercomplex Appell polynomials
title_sort Matrix approach to hypercomplex Appell polynomials
author Aceto, Lidia
author_facet Aceto, Lidia
Malonek, Helmuth
Tomaz, Graça
author_role author
author2 Malonek, Helmuth
Tomaz, Graça
author2_role author
author
dc.contributor.author.fl_str_mv Aceto, Lidia
Malonek, Helmuth
Tomaz, Graça
dc.subject.por.fl_str_mv Hypercomplex differentiability
Appell polynomials
Creation matrix
Pascal matrix
topic Hypercomplex differentiability
Appell polynomials
Creation matrix
Pascal matrix
description Recently the authors presented a matrix representation approach to real Appell polynomials essentially determined by a nilpotent matrix with natural number entries. It allows to consider a set of real Appell polynomials as solution of a suitable first order initial value problem. The paper aims to confirm that the unifying character of this approach can also be applied to the construction of homogeneous Appell polynomials that are solutions of a generalized Cauchy–Riemann system in Euclidean spaces of arbitrary dimension. The result contributes to the development of techniques for polynomial approximation and interpolation in non-commutative Hypercomplex Function Theories with Clifford algebras.
publishDate 2017
dc.date.none.fl_str_mv 2017-06-01T00:00:00Z
2018-03-14T01:03:41Z
2018-03-14
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10314/3907
https://doi.org/10.1016/j.apnum.2016.07.006
http://hdl.handle.net/10314/3907
url http://hdl.handle.net/10314/3907
https://doi.org/10.1016/j.apnum.2016.07.006
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0168-9274
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598081979908096