Matrix approach to hypercomplex Appell polynomials
Main Author: | |
---|---|
Publication Date: | 2017 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10314/3907 https://doi.org/10.1016/j.apnum.2016.07.006 |
Summary: | Recently the authors presented a matrix representation approach to real Appell polynomials essentially determined by a nilpotent matrix with natural number entries. It allows to consider a set of real Appell polynomials as solution of a suitable first order initial value problem. The paper aims to confirm that the unifying character of this approach can also be applied to the construction of homogeneous Appell polynomials that are solutions of a generalized Cauchy–Riemann system in Euclidean spaces of arbitrary dimension. The result contributes to the development of techniques for polynomial approximation and interpolation in non-commutative Hypercomplex Function Theories with Clifford algebras. |
id |
RCAP_6b4f2031004e2ce9e6790baf87f727c7 |
---|---|
oai_identifier_str |
oai:bdigital.ipg.pt:10314/3907 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Matrix approach to hypercomplex Appell polynomialsHypercomplex differentiabilityAppell polynomialsCreation matrixPascal matrixRecently the authors presented a matrix representation approach to real Appell polynomials essentially determined by a nilpotent matrix with natural number entries. It allows to consider a set of real Appell polynomials as solution of a suitable first order initial value problem. The paper aims to confirm that the unifying character of this approach can also be applied to the construction of homogeneous Appell polynomials that are solutions of a generalized Cauchy–Riemann system in Euclidean spaces of arbitrary dimension. The result contributes to the development of techniques for polynomial approximation and interpolation in non-commutative Hypercomplex Function Theories with Clifford algebras.CIDMA – Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal; UDI/IPG – Research Unit for Inland Development, 6300-559 Guarda, PortugalElsevier2018-03-14T01:03:41Z2018-03-142017-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10314/3907https://doi.org/10.1016/j.apnum.2016.07.006http://hdl.handle.net/10314/3907eng0168-9274Aceto, LidiaMalonek, HelmuthTomaz, Graçainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-05T02:59:54Zoai:bdigital.ipg.pt:10314/3907Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:25:02.483647Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Matrix approach to hypercomplex Appell polynomials |
title |
Matrix approach to hypercomplex Appell polynomials |
spellingShingle |
Matrix approach to hypercomplex Appell polynomials Aceto, Lidia Hypercomplex differentiability Appell polynomials Creation matrix Pascal matrix |
title_short |
Matrix approach to hypercomplex Appell polynomials |
title_full |
Matrix approach to hypercomplex Appell polynomials |
title_fullStr |
Matrix approach to hypercomplex Appell polynomials |
title_full_unstemmed |
Matrix approach to hypercomplex Appell polynomials |
title_sort |
Matrix approach to hypercomplex Appell polynomials |
author |
Aceto, Lidia |
author_facet |
Aceto, Lidia Malonek, Helmuth Tomaz, Graça |
author_role |
author |
author2 |
Malonek, Helmuth Tomaz, Graça |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Aceto, Lidia Malonek, Helmuth Tomaz, Graça |
dc.subject.por.fl_str_mv |
Hypercomplex differentiability Appell polynomials Creation matrix Pascal matrix |
topic |
Hypercomplex differentiability Appell polynomials Creation matrix Pascal matrix |
description |
Recently the authors presented a matrix representation approach to real Appell polynomials essentially determined by a nilpotent matrix with natural number entries. It allows to consider a set of real Appell polynomials as solution of a suitable first order initial value problem. The paper aims to confirm that the unifying character of this approach can also be applied to the construction of homogeneous Appell polynomials that are solutions of a generalized Cauchy–Riemann system in Euclidean spaces of arbitrary dimension. The result contributes to the development of techniques for polynomial approximation and interpolation in non-commutative Hypercomplex Function Theories with Clifford algebras. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06-01T00:00:00Z 2018-03-14T01:03:41Z 2018-03-14 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10314/3907 https://doi.org/10.1016/j.apnum.2016.07.006 http://hdl.handle.net/10314/3907 |
url |
http://hdl.handle.net/10314/3907 https://doi.org/10.1016/j.apnum.2016.07.006 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0168-9274 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833598081979908096 |