On pseudo-complex bases for monogenic polynomials

Bibliographic Details
Main Author: Cruz, Carla
Publication Date: 2012
Other Authors: Falcão, M. I., Malonek, H. R.
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/1822/22535
Summary: In the recent past, the problem of constructing bases for spaces of monogenic polynomials, in the framework of Clifford Analysis, has been considered by several authors, using different methods. In this talk we consider bases of 3D monogenic polynomials isomorphic to the complex powers, which are particularly easy to handle, from the computational point of view. Explicit constructions of such polynomial bases are performed and a numerical cost comparison with the well known Fueter polynomial basis is carried out.
id RCAP_d6281b7b1d85bec3f7081575e1f90ed1
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/22535
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling On pseudo-complex bases for monogenic polynomialsHomogeneous monogenic polynomialsHypercomplex analysisAppell setsIn the recent past, the problem of constructing bases for spaces of monogenic polynomials, in the framework of Clifford Analysis, has been considered by several authors, using different methods. In this talk we consider bases of 3D monogenic polynomials isomorphic to the complex powers, which are particularly easy to handle, from the computational point of view. Explicit constructions of such polynomial bases are performed and a numerical cost comparison with the well known Fueter polynomial basis is carried out.FCTUniversidade do MinhoCruz, CarlaFalcão, M. I.Malonek, H. R.20122012-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/22535eng978-0-7354-1105-00094-243X10.1063/1.4765512http://proceedings.aip.org/resource/2/apcpcs/1493/1/350_1info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T04:18:30Zoai:repositorium.sdum.uminho.pt:1822/22535Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:44:57.664545Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv On pseudo-complex bases for monogenic polynomials
title On pseudo-complex bases for monogenic polynomials
spellingShingle On pseudo-complex bases for monogenic polynomials
Cruz, Carla
Homogeneous monogenic polynomials
Hypercomplex analysis
Appell sets
title_short On pseudo-complex bases for monogenic polynomials
title_full On pseudo-complex bases for monogenic polynomials
title_fullStr On pseudo-complex bases for monogenic polynomials
title_full_unstemmed On pseudo-complex bases for monogenic polynomials
title_sort On pseudo-complex bases for monogenic polynomials
author Cruz, Carla
author_facet Cruz, Carla
Falcão, M. I.
Malonek, H. R.
author_role author
author2 Falcão, M. I.
Malonek, H. R.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Cruz, Carla
Falcão, M. I.
Malonek, H. R.
dc.subject.por.fl_str_mv Homogeneous monogenic polynomials
Hypercomplex analysis
Appell sets
topic Homogeneous monogenic polynomials
Hypercomplex analysis
Appell sets
description In the recent past, the problem of constructing bases for spaces of monogenic polynomials, in the framework of Clifford Analysis, has been considered by several authors, using different methods. In this talk we consider bases of 3D monogenic polynomials isomorphic to the complex powers, which are particularly easy to handle, from the computational point of view. Explicit constructions of such polynomial bases are performed and a numerical cost comparison with the well known Fueter polynomial basis is carried out.
publishDate 2012
dc.date.none.fl_str_mv 2012
2012-01-01T00:00:00Z
dc.type.driver.fl_str_mv conference paper
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/22535
url http://hdl.handle.net/1822/22535
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-0-7354-1105-0
0094-243X
10.1063/1.4765512
http://proceedings.aip.org/resource/2/apcpcs/1493/1/350_1
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594860790087680