A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparency
| Main Author: | |
|---|---|
| Publication Date: | 2020 |
| Other Authors: | , , |
| Format: | Article |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/11328/4051 https://doi.org/10.1016/j.elerap.2020.100957 |
Summary: | Tourism crowdsourcing platforms accumulate and use large volumes of feedback data on tourism-related services to provide personalized recommendations with high impact on future tourist behavior. Typically, these recommendation engines build individual tourist profiles and suggest hotels, restaurants, attractions or routes based on the shared ratings, reviews, photos, videos or likes. Due to the dynamic nature of this scenario, where the crowd produces a continuous stream of events, we have been exploring stream-based recommendation methods, using stochastic gradient descent (SGD), to incrementally update the prediction models and post-filters to reduce the search space and improve the recommendation accuracy. In this context, we offer an update and comment on our previous article (Veloso et al., 2019a) by providing a recent literature review and identifying the challenges laying ahead concerning the online recommendation of tourism resources supported by crowdsourced data. |
| id |
RCAP_99151bf5a668a04aec43a85971f487b9 |
|---|---|
| oai_identifier_str |
oai:repositorio.upt.pt:11328/4051 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparencyData stream miningProfilingRecommendationPost-filteringTourism crowdsourcing platforms accumulate and use large volumes of feedback data on tourism-related services to provide personalized recommendations with high impact on future tourist behavior. Typically, these recommendation engines build individual tourist profiles and suggest hotels, restaurants, attractions or routes based on the shared ratings, reviews, photos, videos or likes. Due to the dynamic nature of this scenario, where the crowd produces a continuous stream of events, we have been exploring stream-based recommendation methods, using stochastic gradient descent (SGD), to incrementally update the prediction models and post-filters to reduce the search space and improve the recommendation accuracy. In this context, we offer an update and comment on our previous article (Veloso et al., 2019a) by providing a recent literature review and identifying the challenges laying ahead concerning the online recommendation of tourism resources supported by crowdsourced data.2022-04-28T11:24:01Z2022-04-282020-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfVeloso, B., Leal, F., Malheiro, B., & Burguillo, J. C. (2020). A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparency. Electronic Commerce Research and Applications, 40(March–April 2020), 100957. https://doi.org/10.1016/j.elerap.2020.100957. Repositório Institucional UPT. http://hdl.handle.net/11328/4051http://hdl.handle.net/11328/4051Veloso, B., Leal, F., Malheiro, B., & Burguillo, J. C. (2020). A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparency. Electronic Commerce Research and Applications, 40(March–April 2020), 100957. https://doi.org/10.1016/j.elerap.2020.100957. Repositório Institucional UPT. http://hdl.handle.net/11328/4051http://hdl.handle.net/11328/4051https://doi.org/10.1016/j.elerap.2020.100957eng1567-4223 (Print)https://www.sciencedirect.com/science/article/pii/S156742232030034Xinfo:eu-repo/semantics/restrictedAccessinfo:eu-repo/semantics/openAccessVeloso, BrunoMalheiro, BeneditaBurguillo, Juan CarlosLeal, Fátimareponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-24T02:04:48Zoai:repositorio.upt.pt:11328/4051Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:31:30.524246Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparency |
| title |
A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparency |
| spellingShingle |
A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparency Veloso, Bruno Data stream mining Profiling Recommendation Post-filtering |
| title_short |
A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparency |
| title_full |
A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparency |
| title_fullStr |
A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparency |
| title_full_unstemmed |
A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparency |
| title_sort |
A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparency |
| author |
Veloso, Bruno |
| author_facet |
Veloso, Bruno Malheiro, Benedita Burguillo, Juan Carlos Leal, Fátima |
| author_role |
author |
| author2 |
Malheiro, Benedita Burguillo, Juan Carlos Leal, Fátima |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Veloso, Bruno Malheiro, Benedita Burguillo, Juan Carlos Leal, Fátima |
| dc.subject.por.fl_str_mv |
Data stream mining Profiling Recommendation Post-filtering |
| topic |
Data stream mining Profiling Recommendation Post-filtering |
| description |
Tourism crowdsourcing platforms accumulate and use large volumes of feedback data on tourism-related services to provide personalized recommendations with high impact on future tourist behavior. Typically, these recommendation engines build individual tourist profiles and suggest hotels, restaurants, attractions or routes based on the shared ratings, reviews, photos, videos or likes. Due to the dynamic nature of this scenario, where the crowd produces a continuous stream of events, we have been exploring stream-based recommendation methods, using stochastic gradient descent (SGD), to incrementally update the prediction models and post-filters to reduce the search space and improve the recommendation accuracy. In this context, we offer an update and comment on our previous article (Veloso et al., 2019a) by providing a recent literature review and identifying the challenges laying ahead concerning the online recommendation of tourism resources supported by crowdsourced data. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-04-01T00:00:00Z 2022-04-28T11:24:01Z 2022-04-28 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
Veloso, B., Leal, F., Malheiro, B., & Burguillo, J. C. (2020). A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparency. Electronic Commerce Research and Applications, 40(March–April 2020), 100957. https://doi.org/10.1016/j.elerap.2020.100957. Repositório Institucional UPT. http://hdl.handle.net/11328/4051 http://hdl.handle.net/11328/4051 Veloso, B., Leal, F., Malheiro, B., & Burguillo, J. C. (2020). A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparency. Electronic Commerce Research and Applications, 40(March–April 2020), 100957. https://doi.org/10.1016/j.elerap.2020.100957. Repositório Institucional UPT. http://hdl.handle.net/11328/4051 http://hdl.handle.net/11328/4051 https://doi.org/10.1016/j.elerap.2020.100957 |
| identifier_str_mv |
Veloso, B., Leal, F., Malheiro, B., & Burguillo, J. C. (2020). A 2020 perspective on “Online guest profiling and hotel recommendation”: Reliability, scalability, traceability and transparency. Electronic Commerce Research and Applications, 40(March–April 2020), 100957. https://doi.org/10.1016/j.elerap.2020.100957. Repositório Institucional UPT. http://hdl.handle.net/11328/4051 |
| url |
http://hdl.handle.net/11328/4051 https://doi.org/10.1016/j.elerap.2020.100957 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
1567-4223 (Print) https://www.sciencedirect.com/science/article/pii/S156742232030034X |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/restrictedAccess info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
restrictedAccess openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833598150425706496 |