Export Ready — 

Insertion and extension results for pointfree complete regularity

Bibliographic Details
Main Author: Gutiérrez García, Javier
Publication Date: 2013
Other Authors: Picado, Jorge
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10316/89466
https://doi.org/10.36045/bbms/1382448188
Summary: There are insertion-type characterizations in pointfree topology that extend well known insertion theorems in point-set topology for all relevant higher separation axioms with one notable exception: complete regularity. In this paper we fill this gap. The situation reveals to be an interesting and peculiar one: contrarily to what happens with all the other higher separation axioms, the extension to the pointfree setting of the classical insertion result for completely regular spaces characterizes a formally weakerclass of frames introduced in this paper (called completely c-regular frames). The fact that any compact sublocale (quotient) of a completely regular frame is a C-sublocale (C-quotient) is obtained as a corollary.
id RCAP_84c8a99650cdabb08af0eaa4a53e28e4
oai_identifier_str oai:estudogeral.uc.pt:10316/89466
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Insertion and extension results for pointfree complete regularityFrame, locale, sublocale, completely separated sublocales, compact sublocale, compact-like real function, complete regular frame, upper semicontinuous, lower semicontinuous, insertion, insertion theorem, C-embedding, C∗-embeddingThere are insertion-type characterizations in pointfree topology that extend well known insertion theorems in point-set topology for all relevant higher separation axioms with one notable exception: complete regularity. In this paper we fill this gap. The situation reveals to be an interesting and peculiar one: contrarily to what happens with all the other higher separation axioms, the extension to the pointfree setting of the classical insertion result for completely regular spaces characterizes a formally weakerclass of frames introduced in this paper (called completely c-regular frames). The fact that any compact sublocale (quotient) of a completely regular frame is a C-sublocale (C-quotient) is obtained as a corollary.2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttps://hdl.handle.net/10316/89466https://hdl.handle.net/10316/89466https://doi.org/10.36045/bbms/1382448188enghttps://projecteuclid.org/euclid.bbms/1382448188Gutiérrez García, JavierPicado, Jorgeinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2022-05-25T01:31:53Zoai:estudogeral.uc.pt:10316/89466Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:37:15.038374Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Insertion and extension results for pointfree complete regularity
title Insertion and extension results for pointfree complete regularity
spellingShingle Insertion and extension results for pointfree complete regularity
Gutiérrez García, Javier
Frame, locale, sublocale, completely separated sublocales, compact sublocale, compact-like real function, complete regular frame, upper semicontinuous, lower semicontinuous, insertion, insertion theorem, C-embedding, C∗-embedding
title_short Insertion and extension results for pointfree complete regularity
title_full Insertion and extension results for pointfree complete regularity
title_fullStr Insertion and extension results for pointfree complete regularity
title_full_unstemmed Insertion and extension results for pointfree complete regularity
title_sort Insertion and extension results for pointfree complete regularity
author Gutiérrez García, Javier
author_facet Gutiérrez García, Javier
Picado, Jorge
author_role author
author2 Picado, Jorge
author2_role author
dc.contributor.author.fl_str_mv Gutiérrez García, Javier
Picado, Jorge
dc.subject.por.fl_str_mv Frame, locale, sublocale, completely separated sublocales, compact sublocale, compact-like real function, complete regular frame, upper semicontinuous, lower semicontinuous, insertion, insertion theorem, C-embedding, C∗-embedding
topic Frame, locale, sublocale, completely separated sublocales, compact sublocale, compact-like real function, complete regular frame, upper semicontinuous, lower semicontinuous, insertion, insertion theorem, C-embedding, C∗-embedding
description There are insertion-type characterizations in pointfree topology that extend well known insertion theorems in point-set topology for all relevant higher separation axioms with one notable exception: complete regularity. In this paper we fill this gap. The situation reveals to be an interesting and peculiar one: contrarily to what happens with all the other higher separation axioms, the extension to the pointfree setting of the classical insertion result for completely regular spaces characterizes a formally weakerclass of frames introduced in this paper (called completely c-regular frames). The fact that any compact sublocale (quotient) of a completely regular frame is a C-sublocale (C-quotient) is obtained as a corollary.
publishDate 2013
dc.date.none.fl_str_mv 2013
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10316/89466
https://hdl.handle.net/10316/89466
https://doi.org/10.36045/bbms/1382448188
url https://hdl.handle.net/10316/89466
https://doi.org/10.36045/bbms/1382448188
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://projecteuclid.org/euclid.bbms/1382448188
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602415781216256