Joins of closed sublocales

Bibliographic Details
Main Author: Picado, Jorge
Publication Date: 2019
Other Authors: Pultr, Aleš, Tozzi, Anna
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10316/90477
Summary: Sublocales that are joins of closed ones constitute a frame S_Vc(L) embedded as a sup-sublattice into the coframe S(L) of sublocales of L. We prove that in the case of subfit L it is a subcolocale of S(L), that it is then a Boolean algebra and in fact precisely the Booleanization of S(L). In case of a T_1-space X, S_Vc(\Omega(X)) picks precisely the sublocales corresponding to induced subspaces. In linear L and more generally if L is also a coframe, S_Vc(L) is both a frame and a coframe, but with trivial exceptions not Boolean and not a subcolocale of S(L).
id RCAP_bd32792906886bc71a92301b286c9968
oai_identifier_str oai:estudogeral.uc.pt:10316/90477
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Joins of closed sublocalesFrame, locale, sublocale, nucleus, sublocale lattice, coframe, open sublocale, closed sublocale, T1-space, induced subspace, subfit frame, fit frame, Booleanization.Sublocales that are joins of closed ones constitute a frame S_Vc(L) embedded as a sup-sublattice into the coframe S(L) of sublocales of L. We prove that in the case of subfit L it is a subcolocale of S(L), that it is then a Boolean algebra and in fact precisely the Booleanization of S(L). In case of a T_1-space X, S_Vc(\Omega(X)) picks precisely the sublocales corresponding to induced subspaces. In linear L and more generally if L is also a coframe, S_Vc(L) is both a frame and a coframe, but with trivial exceptions not Boolean and not a subcolocale of S(L).University of Houston20192024-12-30T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttps://hdl.handle.net/10316/90477https://hdl.handle.net/10316/90477enghttps://www.math.uh.edu/~hjm/Vol45-1.htmlPicado, JorgePultr, AlešTozzi, Annainfo:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-02T16:54:04Zoai:estudogeral.uc.pt:10316/90477Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:38:32.628739Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Joins of closed sublocales
title Joins of closed sublocales
spellingShingle Joins of closed sublocales
Picado, Jorge
Frame, locale, sublocale, nucleus, sublocale lattice, coframe, open sublocale, closed sublocale, T1-space, induced subspace, subfit frame, fit frame, Booleanization.
title_short Joins of closed sublocales
title_full Joins of closed sublocales
title_fullStr Joins of closed sublocales
title_full_unstemmed Joins of closed sublocales
title_sort Joins of closed sublocales
author Picado, Jorge
author_facet Picado, Jorge
Pultr, Aleš
Tozzi, Anna
author_role author
author2 Pultr, Aleš
Tozzi, Anna
author2_role author
author
dc.contributor.author.fl_str_mv Picado, Jorge
Pultr, Aleš
Tozzi, Anna
dc.subject.por.fl_str_mv Frame, locale, sublocale, nucleus, sublocale lattice, coframe, open sublocale, closed sublocale, T1-space, induced subspace, subfit frame, fit frame, Booleanization.
topic Frame, locale, sublocale, nucleus, sublocale lattice, coframe, open sublocale, closed sublocale, T1-space, induced subspace, subfit frame, fit frame, Booleanization.
description Sublocales that are joins of closed ones constitute a frame S_Vc(L) embedded as a sup-sublattice into the coframe S(L) of sublocales of L. We prove that in the case of subfit L it is a subcolocale of S(L), that it is then a Boolean algebra and in fact precisely the Booleanization of S(L). In case of a T_1-space X, S_Vc(\Omega(X)) picks precisely the sublocales corresponding to induced subspaces. In linear L and more generally if L is also a coframe, S_Vc(L) is both a frame and a coframe, but with trivial exceptions not Boolean and not a subcolocale of S(L).
publishDate 2019
dc.date.none.fl_str_mv 2019
2024-12-30T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10316/90477
https://hdl.handle.net/10316/90477
url https://hdl.handle.net/10316/90477
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://www.math.uh.edu/~hjm/Vol45-1.html
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.publisher.none.fl_str_mv University of Houston
publisher.none.fl_str_mv University of Houston
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602423444209664