Joins of closed sublocales
Main Author: | |
---|---|
Publication Date: | 2019 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://hdl.handle.net/10316/90477 |
Summary: | Sublocales that are joins of closed ones constitute a frame S_Vc(L) embedded as a sup-sublattice into the coframe S(L) of sublocales of L. We prove that in the case of subfit L it is a subcolocale of S(L), that it is then a Boolean algebra and in fact precisely the Booleanization of S(L). In case of a T_1-space X, S_Vc(\Omega(X)) picks precisely the sublocales corresponding to induced subspaces. In linear L and more generally if L is also a coframe, S_Vc(L) is both a frame and a coframe, but with trivial exceptions not Boolean and not a subcolocale of S(L). |
id |
RCAP_bd32792906886bc71a92301b286c9968 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/90477 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Joins of closed sublocalesFrame, locale, sublocale, nucleus, sublocale lattice, coframe, open sublocale, closed sublocale, T1-space, induced subspace, subfit frame, fit frame, Booleanization.Sublocales that are joins of closed ones constitute a frame S_Vc(L) embedded as a sup-sublattice into the coframe S(L) of sublocales of L. We prove that in the case of subfit L it is a subcolocale of S(L), that it is then a Boolean algebra and in fact precisely the Booleanization of S(L). In case of a T_1-space X, S_Vc(\Omega(X)) picks precisely the sublocales corresponding to induced subspaces. In linear L and more generally if L is also a coframe, S_Vc(L) is both a frame and a coframe, but with trivial exceptions not Boolean and not a subcolocale of S(L).University of Houston20192024-12-30T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttps://hdl.handle.net/10316/90477https://hdl.handle.net/10316/90477enghttps://www.math.uh.edu/~hjm/Vol45-1.htmlPicado, JorgePultr, AlešTozzi, Annainfo:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-02T16:54:04Zoai:estudogeral.uc.pt:10316/90477Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:38:32.628739Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Joins of closed sublocales |
title |
Joins of closed sublocales |
spellingShingle |
Joins of closed sublocales Picado, Jorge Frame, locale, sublocale, nucleus, sublocale lattice, coframe, open sublocale, closed sublocale, T1-space, induced subspace, subfit frame, fit frame, Booleanization. |
title_short |
Joins of closed sublocales |
title_full |
Joins of closed sublocales |
title_fullStr |
Joins of closed sublocales |
title_full_unstemmed |
Joins of closed sublocales |
title_sort |
Joins of closed sublocales |
author |
Picado, Jorge |
author_facet |
Picado, Jorge Pultr, Aleš Tozzi, Anna |
author_role |
author |
author2 |
Pultr, Aleš Tozzi, Anna |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Picado, Jorge Pultr, Aleš Tozzi, Anna |
dc.subject.por.fl_str_mv |
Frame, locale, sublocale, nucleus, sublocale lattice, coframe, open sublocale, closed sublocale, T1-space, induced subspace, subfit frame, fit frame, Booleanization. |
topic |
Frame, locale, sublocale, nucleus, sublocale lattice, coframe, open sublocale, closed sublocale, T1-space, induced subspace, subfit frame, fit frame, Booleanization. |
description |
Sublocales that are joins of closed ones constitute a frame S_Vc(L) embedded as a sup-sublattice into the coframe S(L) of sublocales of L. We prove that in the case of subfit L it is a subcolocale of S(L), that it is then a Boolean algebra and in fact precisely the Booleanization of S(L). In case of a T_1-space X, S_Vc(\Omega(X)) picks precisely the sublocales corresponding to induced subspaces. In linear L and more generally if L is also a coframe, S_Vc(L) is both a frame and a coframe, but with trivial exceptions not Boolean and not a subcolocale of S(L). |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 2024-12-30T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10316/90477 https://hdl.handle.net/10316/90477 |
url |
https://hdl.handle.net/10316/90477 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://www.math.uh.edu/~hjm/Vol45-1.html |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.publisher.none.fl_str_mv |
University of Houston |
publisher.none.fl_str_mv |
University of Houston |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833602423444209664 |