Pointfree forms of Dowker and Michael insertion theorems
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2007 |
| Outros Autores: | , |
| Tipo de documento: | Outros |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | https://hdl.handle.net/10316/11276 |
Resumo: | In this paper we prove two strict insertion theorems for frame homomorphisms. When applied to the frame of all open subsets of a topological space they are equivalent to the insertion statements of the classical theorems of Dowker and Michael regarding, respectively, normal countably paracompact spaces and perfectly normal spaces. In addition, a study of perfect normality for frames is made. |
| id |
RCAP_c6b394815093e1f387b29c9b75d26d1a |
|---|---|
| oai_identifier_str |
oai:estudogeral.uc.pt:10316/11276 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Pointfree forms of Dowker and Michael insertion theoremsFrameSublocaleInsertion theoremExtension theoremKat¡etov relationContinuous real function on a frameLower semicontinuousUpper semicontinuousNormal framePerfectly normal frameCountably paracompact frameIn this paper we prove two strict insertion theorems for frame homomorphisms. When applied to the frame of all open subsets of a topological space they are equivalent to the insertion statements of the classical theorems of Dowker and Michael regarding, respectively, normal countably paracompact spaces and perfectly normal spaces. In addition, a study of perfect normality for frames is made.Ministry of Education and Science of Spain and FEDER under grant MTM2006-14925-C02-02. The third named author acknowledges financial support from the Centre of Mathematics of the University of Coimbra/FCT.Centro de Matemática da Universidade de Coimbra2007info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/otherhttps://hdl.handle.net/10316/11276https://hdl.handle.net/10316/11276engPré-Publicações DMUC. 07-41 (2007)Gutiérrez García, JavierKubiak, TomaszPicado, Jorgeinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2020-05-25T13:10:49Zoai:estudogeral.uc.pt:10316/11276Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:23:19.737093Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Pointfree forms of Dowker and Michael insertion theorems |
| title |
Pointfree forms of Dowker and Michael insertion theorems |
| spellingShingle |
Pointfree forms of Dowker and Michael insertion theorems Gutiérrez García, Javier Frame Sublocale Insertion theorem Extension theorem Kat¡etov relation Continuous real function on a frame Lower semicontinuous Upper semicontinuous Normal frame Perfectly normal frame Countably paracompact frame |
| title_short |
Pointfree forms of Dowker and Michael insertion theorems |
| title_full |
Pointfree forms of Dowker and Michael insertion theorems |
| title_fullStr |
Pointfree forms of Dowker and Michael insertion theorems |
| title_full_unstemmed |
Pointfree forms of Dowker and Michael insertion theorems |
| title_sort |
Pointfree forms of Dowker and Michael insertion theorems |
| author |
Gutiérrez García, Javier |
| author_facet |
Gutiérrez García, Javier Kubiak, Tomasz Picado, Jorge |
| author_role |
author |
| author2 |
Kubiak, Tomasz Picado, Jorge |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Gutiérrez García, Javier Kubiak, Tomasz Picado, Jorge |
| dc.subject.por.fl_str_mv |
Frame Sublocale Insertion theorem Extension theorem Kat¡etov relation Continuous real function on a frame Lower semicontinuous Upper semicontinuous Normal frame Perfectly normal frame Countably paracompact frame |
| topic |
Frame Sublocale Insertion theorem Extension theorem Kat¡etov relation Continuous real function on a frame Lower semicontinuous Upper semicontinuous Normal frame Perfectly normal frame Countably paracompact frame |
| description |
In this paper we prove two strict insertion theorems for frame homomorphisms. When applied to the frame of all open subsets of a topological space they are equivalent to the insertion statements of the classical theorems of Dowker and Michael regarding, respectively, normal countably paracompact spaces and perfectly normal spaces. In addition, a study of perfect normality for frames is made. |
| publishDate |
2007 |
| dc.date.none.fl_str_mv |
2007 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/other |
| format |
other |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10316/11276 https://hdl.handle.net/10316/11276 |
| url |
https://hdl.handle.net/10316/11276 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
Pré-Publicações DMUC. 07-41 (2007) |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Centro de Matemática da Universidade de Coimbra |
| publisher.none.fl_str_mv |
Centro de Matemática da Universidade de Coimbra |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833602338946809856 |