Export Ready — 

Rings of real functions in Pointfree Topology

Bibliographic Details
Main Author: Gutiérrez García, Javier
Publication Date: 2010
Other Authors: Picado, Jorge
Format: Other
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10316/13708
Summary: This paper deals with the algebra F(L) of real functions of a frame L and its subclasses LSC(L) and USC(L) of, respectively, lower and upper semicontinuous real functions. It is well-known that F(L) is a lattice-ordered ring; this paper presents explicit formulas for its algebraic operations which allow to conclude about their behaviour in LSC(L) and USC(L). As applications, idempotent functions are characterized and the results of [10] about strict insertion of functions are signi cantly improved: general pointfree formulations that correspond exactly to the classical strict insertion results of Dowker and Michael regarding, respectively, normal countably paracompact spaces and perfectly normal spaces are derived. The paper ends with a brief discussion concerning the frames in which every arbitrary real function on the -dissolution of the frame is continuous
id RCAP_8313d7a9cd74ed5f8c5e18a45c31d67b
oai_identifier_str oai:estudogeral.uc.pt:10316/13708
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Rings of real functions in Pointfree TopologyFrameLocaleSublocaleFrame of realsScaleFrame real functionContinuous real functionLower semicontinuousUpper semicontinuousLattice-ordered ringRing of continuous functions in pointfree topologyStrict insertionThis paper deals with the algebra F(L) of real functions of a frame L and its subclasses LSC(L) and USC(L) of, respectively, lower and upper semicontinuous real functions. It is well-known that F(L) is a lattice-ordered ring; this paper presents explicit formulas for its algebraic operations which allow to conclude about their behaviour in LSC(L) and USC(L). As applications, idempotent functions are characterized and the results of [10] about strict insertion of functions are signi cantly improved: general pointfree formulations that correspond exactly to the classical strict insertion results of Dowker and Michael regarding, respectively, normal countably paracompact spaces and perfectly normal spaces are derived. The paper ends with a brief discussion concerning the frames in which every arbitrary real function on the -dissolution of the frame is continuousCentro de Matemática da Universidade de Coimbra2010info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/otherhttps://hdl.handle.net/10316/13708https://hdl.handle.net/10316/13708engPré-Publicações DMUC. 10-08 (2010)Gutiérrez García, JavierPicado, Jorgeinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2020-05-25T10:14:09Zoai:estudogeral.uc.pt:10316/13708Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:23:25.368072Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Rings of real functions in Pointfree Topology
title Rings of real functions in Pointfree Topology
spellingShingle Rings of real functions in Pointfree Topology
Gutiérrez García, Javier
Frame
Locale
Sublocale
Frame of reals
Scale
Frame real function
Continuous real function
Lower semicontinuous
Upper semicontinuous
Lattice-ordered ring
Ring of continuous functions in pointfree topology
Strict insertion
title_short Rings of real functions in Pointfree Topology
title_full Rings of real functions in Pointfree Topology
title_fullStr Rings of real functions in Pointfree Topology
title_full_unstemmed Rings of real functions in Pointfree Topology
title_sort Rings of real functions in Pointfree Topology
author Gutiérrez García, Javier
author_facet Gutiérrez García, Javier
Picado, Jorge
author_role author
author2 Picado, Jorge
author2_role author
dc.contributor.author.fl_str_mv Gutiérrez García, Javier
Picado, Jorge
dc.subject.por.fl_str_mv Frame
Locale
Sublocale
Frame of reals
Scale
Frame real function
Continuous real function
Lower semicontinuous
Upper semicontinuous
Lattice-ordered ring
Ring of continuous functions in pointfree topology
Strict insertion
topic Frame
Locale
Sublocale
Frame of reals
Scale
Frame real function
Continuous real function
Lower semicontinuous
Upper semicontinuous
Lattice-ordered ring
Ring of continuous functions in pointfree topology
Strict insertion
description This paper deals with the algebra F(L) of real functions of a frame L and its subclasses LSC(L) and USC(L) of, respectively, lower and upper semicontinuous real functions. It is well-known that F(L) is a lattice-ordered ring; this paper presents explicit formulas for its algebraic operations which allow to conclude about their behaviour in LSC(L) and USC(L). As applications, idempotent functions are characterized and the results of [10] about strict insertion of functions are signi cantly improved: general pointfree formulations that correspond exactly to the classical strict insertion results of Dowker and Michael regarding, respectively, normal countably paracompact spaces and perfectly normal spaces are derived. The paper ends with a brief discussion concerning the frames in which every arbitrary real function on the -dissolution of the frame is continuous
publishDate 2010
dc.date.none.fl_str_mv 2010
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/other
format other
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10316/13708
https://hdl.handle.net/10316/13708
url https://hdl.handle.net/10316/13708
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Pré-Publicações DMUC. 10-08 (2010)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Centro de Matemática da Universidade de Coimbra
publisher.none.fl_str_mv Centro de Matemática da Universidade de Coimbra
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602339539255296