A new look at localic interpolation theorems
| Main Author: | |
|---|---|
| Publication Date: | 2006 |
| Format: | Article |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | https://hdl.handle.net/10316/4615 https://doi.org/10.1016/j.topol.2004.10.022 |
Summary: | This paper presents a new treatment of the localic Katetov-Tong interpolation theorem, based on an analysis of special properties of normal frames, which shows that it does not hold in full generality. Besides giving us the conditions under which the localic Katetov-Tong interpolation theorem holds, this approach leads to a especially transparent and succinct proof of it. It is also shown that this pointfree extension of Katetov-Tong theorem still covers the localic versions of Urysohn's Lemma and Tietze's Extension Theorem. |
| id |
RCAP_5d3d35a939ea9a51465e63c893d32cd6 |
|---|---|
| oai_identifier_str |
oai:estudogeral.uc.pt:10316/4615 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
A new look at localic interpolation theoremsLocalesNormal framesFrame of realsUpper (lower) frame of realsContinuous real functionsUpper (lower) semicontinuous real functionsThis paper presents a new treatment of the localic Katetov-Tong interpolation theorem, based on an analysis of special properties of normal frames, which shows that it does not hold in full generality. Besides giving us the conditions under which the localic Katetov-Tong interpolation theorem holds, this approach leads to a especially transparent and succinct proof of it. It is also shown that this pointfree extension of Katetov-Tong theorem still covers the localic versions of Urysohn's Lemma and Tietze's Extension Theorem.http://www.sciencedirect.com/science/article/B6V1K-4GWBDP0-3/1/c51690ad60d2e54badeac9b463852c5e2006info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttps://hdl.handle.net/10316/4615https://hdl.handle.net/10316/4615https://doi.org/10.1016/j.topol.2004.10.022engTopology and its Applications. 153:16 (2006) 3203-3218Picado, Jorgeinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2020-11-06T16:59:23Zoai:estudogeral.uc.pt:10316/4615Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:23:12.779379Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
A new look at localic interpolation theorems |
| title |
A new look at localic interpolation theorems |
| spellingShingle |
A new look at localic interpolation theorems Picado, Jorge Locales Normal frames Frame of reals Upper (lower) frame of reals Continuous real functions Upper (lower) semicontinuous real functions |
| title_short |
A new look at localic interpolation theorems |
| title_full |
A new look at localic interpolation theorems |
| title_fullStr |
A new look at localic interpolation theorems |
| title_full_unstemmed |
A new look at localic interpolation theorems |
| title_sort |
A new look at localic interpolation theorems |
| author |
Picado, Jorge |
| author_facet |
Picado, Jorge |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Picado, Jorge |
| dc.subject.por.fl_str_mv |
Locales Normal frames Frame of reals Upper (lower) frame of reals Continuous real functions Upper (lower) semicontinuous real functions |
| topic |
Locales Normal frames Frame of reals Upper (lower) frame of reals Continuous real functions Upper (lower) semicontinuous real functions |
| description |
This paper presents a new treatment of the localic Katetov-Tong interpolation theorem, based on an analysis of special properties of normal frames, which shows that it does not hold in full generality. Besides giving us the conditions under which the localic Katetov-Tong interpolation theorem holds, this approach leads to a especially transparent and succinct proof of it. It is also shown that this pointfree extension of Katetov-Tong theorem still covers the localic versions of Urysohn's Lemma and Tietze's Extension Theorem. |
| publishDate |
2006 |
| dc.date.none.fl_str_mv |
2006 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10316/4615 https://hdl.handle.net/10316/4615 https://doi.org/10.1016/j.topol.2004.10.022 |
| url |
https://hdl.handle.net/10316/4615 https://doi.org/10.1016/j.topol.2004.10.022 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
Topology and its Applications. 153:16 (2006) 3203-3218 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
aplication/PDF |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833602338222243840 |