Grand lebesgue spaces with mixed local and global aggrandization and the maximal and singular operators

Bibliographic Details
Main Author: Rafeiro, H.
Publication Date: 2023
Other Authors: Samko, Stefan, Umarkhadzhiev, S.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.1/20195
Summary: The approach to "locally" aggrandize Lebesgue spaces, previously suggested by the authors and based on the notion of "aggrandizer", is combined with the usual "global" aggrandization. We study properties of such spaces including embeddings, dependence of the choice of the aggrandizer and, in particular, we discuss the question when these spaces are not new, coinciding with globally aggrandized spaces, and when they proved to be new. We study the boundedness of the maximal, singular, and maximal singular operators in the introduced spaces.
id RCAP_5d6746950dadaa70a0017edd7302fd9e
oai_identifier_str oai:sapientia.ualg.pt:10400.1/20195
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Grand lebesgue spaces with mixed local and global aggrandization and the maximal and singular operatorsGrand lebesgue spaceMaximal functionSingular integralMaximal singular integralThe approach to "locally" aggrandize Lebesgue spaces, previously suggested by the authors and based on the notion of "aggrandizer", is combined with the usual "global" aggrandization. We study properties of such spaces including embeddings, dependence of the choice of the aggrandizer and, in particular, we discuss the question when these spaces are not new, coinciding with globally aggrandized spaces, and when they proved to be new. We study the boundedness of the maximal, singular, and maximal singular operators in the introduced spaces.SpringerSapientiaRafeiro, H.Samko, StefanUmarkhadzhiev, S.2023-12-07T11:52:18Z20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/20195eng0133-385210.1007/s10476-023-0243-1info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-18T17:48:35Zoai:sapientia.ualg.pt:10400.1/20195Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:36:54.427463Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Grand lebesgue spaces with mixed local and global aggrandization and the maximal and singular operators
title Grand lebesgue spaces with mixed local and global aggrandization and the maximal and singular operators
spellingShingle Grand lebesgue spaces with mixed local and global aggrandization and the maximal and singular operators
Rafeiro, H.
Grand lebesgue space
Maximal function
Singular integral
Maximal singular integral
title_short Grand lebesgue spaces with mixed local and global aggrandization and the maximal and singular operators
title_full Grand lebesgue spaces with mixed local and global aggrandization and the maximal and singular operators
title_fullStr Grand lebesgue spaces with mixed local and global aggrandization and the maximal and singular operators
title_full_unstemmed Grand lebesgue spaces with mixed local and global aggrandization and the maximal and singular operators
title_sort Grand lebesgue spaces with mixed local and global aggrandization and the maximal and singular operators
author Rafeiro, H.
author_facet Rafeiro, H.
Samko, Stefan
Umarkhadzhiev, S.
author_role author
author2 Samko, Stefan
Umarkhadzhiev, S.
author2_role author
author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Rafeiro, H.
Samko, Stefan
Umarkhadzhiev, S.
dc.subject.por.fl_str_mv Grand lebesgue space
Maximal function
Singular integral
Maximal singular integral
topic Grand lebesgue space
Maximal function
Singular integral
Maximal singular integral
description The approach to "locally" aggrandize Lebesgue spaces, previously suggested by the authors and based on the notion of "aggrandizer", is combined with the usual "global" aggrandization. We study properties of such spaces including embeddings, dependence of the choice of the aggrandizer and, in particular, we discuss the question when these spaces are not new, coinciding with globally aggrandized spaces, and when they proved to be new. We study the boundedness of the maximal, singular, and maximal singular operators in the introduced spaces.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-07T11:52:18Z
2023
2023-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/20195
url http://hdl.handle.net/10400.1/20195
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0133-3852
10.1007/s10476-023-0243-1
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598745734807552