Machine learning in incident categorization automation

Bibliographic Details
Main Author: Silva, S.
Publication Date: 2018
Other Authors: Pereira, R., Ribeiro, R.
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://ciencia.iscte-iul.pt/id/ci-pub-48772
http://hdl.handle.net/10071/16403
Summary: IT incident management process requires a correct categorization to attribute incident tickets to the right resolution group and obtain an operational system as quickly as possible, having the lowest possible impact on the business and costumers. In this work, we introduce a module to automatically categorize incident tickets, turning the responsible teams for incident management more productive. This module can be integrated as an extension into an incident ticket system (ITS), which contributes to reduce the time wasted on incident ticket route and reduce the amount of errors on incident categorization. To automate the classification, we use a support vector machine (SVM), obtaining an accuracy of 89%, approximately, on a dataset of real-world incident tickets.
id RCAP_344d43a056afea15d0cc3a3d4e33296f
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/16403
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Machine learning in incident categorization automationMachine learningAutomated incident categorizationSVMIncident managementIncident management processCategorizationIT incident management process requires a correct categorization to attribute incident tickets to the right resolution group and obtain an operational system as quickly as possible, having the lowest possible impact on the business and costumers. In this work, we introduce a module to automatically categorize incident tickets, turning the responsible teams for incident management more productive. This module can be integrated as an extension into an incident ticket system (ITS), which contributes to reduce the time wasted on incident ticket route and reduce the amount of errors on incident categorization. To automate the classification, we use a support vector machine (SVM), obtaining an accuracy of 89%, approximately, on a dataset of real-world incident tickets.IEEE2018-07-16T15:58:47Z2018-01-01T00:00:00Z20182018-07-16T15:58:05Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://ciencia.iscte-iul.pt/id/ci-pub-48772http://hdl.handle.net/10071/16403eng978-989-98434-8-610.23919/CISTI.2018.8399244Silva, S.Pereira, R.Ribeiro, R.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T03:55:23Zoai:repositorio.iscte-iul.pt:10071/16403Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:34:17.408563Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Machine learning in incident categorization automation
title Machine learning in incident categorization automation
spellingShingle Machine learning in incident categorization automation
Silva, S.
Machine learning
Automated incident categorization
SVM
Incident management
Incident management process
Categorization
title_short Machine learning in incident categorization automation
title_full Machine learning in incident categorization automation
title_fullStr Machine learning in incident categorization automation
title_full_unstemmed Machine learning in incident categorization automation
title_sort Machine learning in incident categorization automation
author Silva, S.
author_facet Silva, S.
Pereira, R.
Ribeiro, R.
author_role author
author2 Pereira, R.
Ribeiro, R.
author2_role author
author
dc.contributor.author.fl_str_mv Silva, S.
Pereira, R.
Ribeiro, R.
dc.subject.por.fl_str_mv Machine learning
Automated incident categorization
SVM
Incident management
Incident management process
Categorization
topic Machine learning
Automated incident categorization
SVM
Incident management
Incident management process
Categorization
description IT incident management process requires a correct categorization to attribute incident tickets to the right resolution group and obtain an operational system as quickly as possible, having the lowest possible impact on the business and costumers. In this work, we introduce a module to automatically categorize incident tickets, turning the responsible teams for incident management more productive. This module can be integrated as an extension into an incident ticket system (ITS), which contributes to reduce the time wasted on incident ticket route and reduce the amount of errors on incident categorization. To automate the classification, we use a support vector machine (SVM), obtaining an accuracy of 89%, approximately, on a dataset of real-world incident tickets.
publishDate 2018
dc.date.none.fl_str_mv 2018-07-16T15:58:47Z
2018-01-01T00:00:00Z
2018
2018-07-16T15:58:05Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://ciencia.iscte-iul.pt/id/ci-pub-48772
http://hdl.handle.net/10071/16403
url https://ciencia.iscte-iul.pt/id/ci-pub-48772
http://hdl.handle.net/10071/16403
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-989-98434-8-6
10.23919/CISTI.2018.8399244
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEEE
publisher.none.fl_str_mv IEEE
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597515744673792