Less is more in incident categorization

Detalhes bibliográficos
Autor(a) principal: Silva, S.
Data de Publicação: 2018
Outros Autores: Ribeiro, R., Pereira, R.
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: https://ciencia.iscte-iul.pt/id/ci-pub-50350
http://hdl.handle.net/10071/16690
Resumo: The IT incident management process requires a correct categorization to attribute incident tickets to the right resolution group and obtain as quickly as possible an operational system, impacting the minimum as possible the business and costumers. In this work, we introduce automatic text classification, demonstrating the application of several natural language processing techniques and analyzing the impact of each one on a real incident tickets dataset. The techniques that we explore in the pre-processing of the text that describes an incident are the following: tokenization, stemming, eliminating stop-words, named-entity recognition, and TFxIDF-based document representation. Finally, to build the model and observe the results after applying the previous techniques, we use two machine learning algorithms: Support Vector Machine (SVM) and K-Nearest Neighbor (KNN). Two important findings result from this study: a shorter description of an incident is better than a full description of an incident; and, pre-processing has little impact on incident categorization, mainly due the specific vocabulary used in this type of text.
id RCAP_4f6f8375ec0fe514257bfab7964c08ff
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/16690
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Less is more in incident categorizationMachine learningAutomated incident categorizationSVMIncident managementNatural languageThe IT incident management process requires a correct categorization to attribute incident tickets to the right resolution group and obtain as quickly as possible an operational system, impacting the minimum as possible the business and costumers. In this work, we introduce automatic text classification, demonstrating the application of several natural language processing techniques and analyzing the impact of each one on a real incident tickets dataset. The techniques that we explore in the pre-processing of the text that describes an incident are the following: tokenization, stemming, eliminating stop-words, named-entity recognition, and TFxIDF-based document representation. Finally, to build the model and observe the results after applying the previous techniques, we use two machine learning algorithms: Support Vector Machine (SVM) and K-Nearest Neighbor (KNN). Two important findings result from this study: a shorter description of an incident is better than a full description of an incident; and, pre-processing has little impact on incident categorization, mainly due the specific vocabulary used in this type of text.Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik2018-10-17T16:39:24Z2018-01-01T00:00:00Z2018conference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://ciencia.iscte-iul.pt/id/ci-pub-50350http://hdl.handle.net/10071/16690eng978-3-95977-072-92190-680710.4230/OASIcs.SLATE.2018.17Silva, S.Ribeiro, R.Pereira, R.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T03:56:10Zoai:repositorio.iscte-iul.pt:10071/16690Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:34:30.413417Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Less is more in incident categorization
title Less is more in incident categorization
spellingShingle Less is more in incident categorization
Silva, S.
Machine learning
Automated incident categorization
SVM
Incident management
Natural language
title_short Less is more in incident categorization
title_full Less is more in incident categorization
title_fullStr Less is more in incident categorization
title_full_unstemmed Less is more in incident categorization
title_sort Less is more in incident categorization
author Silva, S.
author_facet Silva, S.
Ribeiro, R.
Pereira, R.
author_role author
author2 Ribeiro, R.
Pereira, R.
author2_role author
author
dc.contributor.author.fl_str_mv Silva, S.
Ribeiro, R.
Pereira, R.
dc.subject.por.fl_str_mv Machine learning
Automated incident categorization
SVM
Incident management
Natural language
topic Machine learning
Automated incident categorization
SVM
Incident management
Natural language
description The IT incident management process requires a correct categorization to attribute incident tickets to the right resolution group and obtain as quickly as possible an operational system, impacting the minimum as possible the business and costumers. In this work, we introduce automatic text classification, demonstrating the application of several natural language processing techniques and analyzing the impact of each one on a real incident tickets dataset. The techniques that we explore in the pre-processing of the text that describes an incident are the following: tokenization, stemming, eliminating stop-words, named-entity recognition, and TFxIDF-based document representation. Finally, to build the model and observe the results after applying the previous techniques, we use two machine learning algorithms: Support Vector Machine (SVM) and K-Nearest Neighbor (KNN). Two important findings result from this study: a shorter description of an incident is better than a full description of an incident; and, pre-processing has little impact on incident categorization, mainly due the specific vocabulary used in this type of text.
publishDate 2018
dc.date.none.fl_str_mv 2018-10-17T16:39:24Z
2018-01-01T00:00:00Z
2018
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://ciencia.iscte-iul.pt/id/ci-pub-50350
http://hdl.handle.net/10071/16690
url https://ciencia.iscte-iul.pt/id/ci-pub-50350
http://hdl.handle.net/10071/16690
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-3-95977-072-9
2190-6807
10.4230/OASIcs.SLATE.2018.17
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
publisher.none.fl_str_mv Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597520242016256