Less is more in incident categorization
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2018 |
| Outros Autores: | , |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | https://ciencia.iscte-iul.pt/id/ci-pub-50350 http://hdl.handle.net/10071/16690 |
Resumo: | The IT incident management process requires a correct categorization to attribute incident tickets to the right resolution group and obtain as quickly as possible an operational system, impacting the minimum as possible the business and costumers. In this work, we introduce automatic text classification, demonstrating the application of several natural language processing techniques and analyzing the impact of each one on a real incident tickets dataset. The techniques that we explore in the pre-processing of the text that describes an incident are the following: tokenization, stemming, eliminating stop-words, named-entity recognition, and TFxIDF-based document representation. Finally, to build the model and observe the results after applying the previous techniques, we use two machine learning algorithms: Support Vector Machine (SVM) and K-Nearest Neighbor (KNN). Two important findings result from this study: a shorter description of an incident is better than a full description of an incident; and, pre-processing has little impact on incident categorization, mainly due the specific vocabulary used in this type of text. |
| id |
RCAP_4f6f8375ec0fe514257bfab7964c08ff |
|---|---|
| oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/16690 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Less is more in incident categorizationMachine learningAutomated incident categorizationSVMIncident managementNatural languageThe IT incident management process requires a correct categorization to attribute incident tickets to the right resolution group and obtain as quickly as possible an operational system, impacting the minimum as possible the business and costumers. In this work, we introduce automatic text classification, demonstrating the application of several natural language processing techniques and analyzing the impact of each one on a real incident tickets dataset. The techniques that we explore in the pre-processing of the text that describes an incident are the following: tokenization, stemming, eliminating stop-words, named-entity recognition, and TFxIDF-based document representation. Finally, to build the model and observe the results after applying the previous techniques, we use two machine learning algorithms: Support Vector Machine (SVM) and K-Nearest Neighbor (KNN). Two important findings result from this study: a shorter description of an incident is better than a full description of an incident; and, pre-processing has little impact on incident categorization, mainly due the specific vocabulary used in this type of text.Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik2018-10-17T16:39:24Z2018-01-01T00:00:00Z2018conference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://ciencia.iscte-iul.pt/id/ci-pub-50350http://hdl.handle.net/10071/16690eng978-3-95977-072-92190-680710.4230/OASIcs.SLATE.2018.17Silva, S.Ribeiro, R.Pereira, R.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T03:56:10Zoai:repositorio.iscte-iul.pt:10071/16690Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:34:30.413417Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Less is more in incident categorization |
| title |
Less is more in incident categorization |
| spellingShingle |
Less is more in incident categorization Silva, S. Machine learning Automated incident categorization SVM Incident management Natural language |
| title_short |
Less is more in incident categorization |
| title_full |
Less is more in incident categorization |
| title_fullStr |
Less is more in incident categorization |
| title_full_unstemmed |
Less is more in incident categorization |
| title_sort |
Less is more in incident categorization |
| author |
Silva, S. |
| author_facet |
Silva, S. Ribeiro, R. Pereira, R. |
| author_role |
author |
| author2 |
Ribeiro, R. Pereira, R. |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Silva, S. Ribeiro, R. Pereira, R. |
| dc.subject.por.fl_str_mv |
Machine learning Automated incident categorization SVM Incident management Natural language |
| topic |
Machine learning Automated incident categorization SVM Incident management Natural language |
| description |
The IT incident management process requires a correct categorization to attribute incident tickets to the right resolution group and obtain as quickly as possible an operational system, impacting the minimum as possible the business and costumers. In this work, we introduce automatic text classification, demonstrating the application of several natural language processing techniques and analyzing the impact of each one on a real incident tickets dataset. The techniques that we explore in the pre-processing of the text that describes an incident are the following: tokenization, stemming, eliminating stop-words, named-entity recognition, and TFxIDF-based document representation. Finally, to build the model and observe the results after applying the previous techniques, we use two machine learning algorithms: Support Vector Machine (SVM) and K-Nearest Neighbor (KNN). Two important findings result from this study: a shorter description of an incident is better than a full description of an incident; and, pre-processing has little impact on incident categorization, mainly due the specific vocabulary used in this type of text. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-10-17T16:39:24Z 2018-01-01T00:00:00Z 2018 |
| dc.type.driver.fl_str_mv |
conference object |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://ciencia.iscte-iul.pt/id/ci-pub-50350 http://hdl.handle.net/10071/16690 |
| url |
https://ciencia.iscte-iul.pt/id/ci-pub-50350 http://hdl.handle.net/10071/16690 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
978-3-95977-072-9 2190-6807 10.4230/OASIcs.SLATE.2018.17 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik |
| publisher.none.fl_str_mv |
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833597520242016256 |