Machine learning in incident categorization automation
Main Author: | |
---|---|
Publication Date: | 2018 |
Other Authors: | , |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://ciencia.iscte-iul.pt/id/ci-pub-48772 http://hdl.handle.net/10071/16403 |
Summary: | IT incident management process requires a correct categorization to attribute incident tickets to the right resolution group and obtain an operational system as quickly as possible, having the lowest possible impact on the business and costumers. In this work, we introduce a module to automatically categorize incident tickets, turning the responsible teams for incident management more productive. This module can be integrated as an extension into an incident ticket system (ITS), which contributes to reduce the time wasted on incident ticket route and reduce the amount of errors on incident categorization. To automate the classification, we use a support vector machine (SVM), obtaining an accuracy of 89%, approximately, on a dataset of real-world incident tickets. |
id |
RCAP_344d43a056afea15d0cc3a3d4e33296f |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/16403 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Machine learning in incident categorization automationMachine learningAutomated incident categorizationSVMIncident managementIncident management processCategorizationIT incident management process requires a correct categorization to attribute incident tickets to the right resolution group and obtain an operational system as quickly as possible, having the lowest possible impact on the business and costumers. In this work, we introduce a module to automatically categorize incident tickets, turning the responsible teams for incident management more productive. This module can be integrated as an extension into an incident ticket system (ITS), which contributes to reduce the time wasted on incident ticket route and reduce the amount of errors on incident categorization. To automate the classification, we use a support vector machine (SVM), obtaining an accuracy of 89%, approximately, on a dataset of real-world incident tickets.IEEE2018-07-16T15:58:47Z2018-01-01T00:00:00Z20182018-07-16T15:58:05Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://ciencia.iscte-iul.pt/id/ci-pub-48772http://hdl.handle.net/10071/16403eng978-989-98434-8-610.23919/CISTI.2018.8399244Silva, S.Pereira, R.Ribeiro, R.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T03:55:23Zoai:repositorio.iscte-iul.pt:10071/16403Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:34:17.408563Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Machine learning in incident categorization automation |
title |
Machine learning in incident categorization automation |
spellingShingle |
Machine learning in incident categorization automation Silva, S. Machine learning Automated incident categorization SVM Incident management Incident management process Categorization |
title_short |
Machine learning in incident categorization automation |
title_full |
Machine learning in incident categorization automation |
title_fullStr |
Machine learning in incident categorization automation |
title_full_unstemmed |
Machine learning in incident categorization automation |
title_sort |
Machine learning in incident categorization automation |
author |
Silva, S. |
author_facet |
Silva, S. Pereira, R. Ribeiro, R. |
author_role |
author |
author2 |
Pereira, R. Ribeiro, R. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Silva, S. Pereira, R. Ribeiro, R. |
dc.subject.por.fl_str_mv |
Machine learning Automated incident categorization SVM Incident management Incident management process Categorization |
topic |
Machine learning Automated incident categorization SVM Incident management Incident management process Categorization |
description |
IT incident management process requires a correct categorization to attribute incident tickets to the right resolution group and obtain an operational system as quickly as possible, having the lowest possible impact on the business and costumers. In this work, we introduce a module to automatically categorize incident tickets, turning the responsible teams for incident management more productive. This module can be integrated as an extension into an incident ticket system (ITS), which contributes to reduce the time wasted on incident ticket route and reduce the amount of errors on incident categorization. To automate the classification, we use a support vector machine (SVM), obtaining an accuracy of 89%, approximately, on a dataset of real-world incident tickets. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-07-16T15:58:47Z 2018-01-01T00:00:00Z 2018 2018-07-16T15:58:05Z |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://ciencia.iscte-iul.pt/id/ci-pub-48772 http://hdl.handle.net/10071/16403 |
url |
https://ciencia.iscte-iul.pt/id/ci-pub-48772 http://hdl.handle.net/10071/16403 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
978-989-98434-8-6 10.23919/CISTI.2018.8399244 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833597515744673792 |