Crowdsourced data stream mining for tourism recommendation
Main Author: | |
---|---|
Publication Date: | 2021 |
Other Authors: | , , |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/11328/3502 https://doi.org/10.1007/978-3-030-72657-7_25 |
Summary: | Crowdsourced data streams are continuous flows of data generated at high rate by users, also known as the crowd. These data streams are popular and extremely valuable in several domains. This is the case of tourism, where crowdsourcing platforms rely on tourist and business inputs to provide tailored recommendations to future tourists in real time. The continuous, open and non-curated nature of the crowd-originated data requires robust data stream mining techniques for on-line profiling, recommendation and evaluation. The sought techniques need, not only, to continuously improve profiles and learn models, but also be transparent, overcome biases, prioritise preferences, and master huge data volumes; all in real time. This article surveys the state-of-art in this field, and identifies future research opportunities. |
id |
RCAP_1b4173f54c886634b7774d6f973d06a0 |
---|---|
oai_identifier_str |
oai:repositorio.upt.pt:11328/3502 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Crowdsourced data stream mining for tourism recommendationCrowdsourced data streamsData stream miningProfilingRecommendationTourismCrowdsourced data streams are continuous flows of data generated at high rate by users, also known as the crowd. These data streams are popular and extremely valuable in several domains. This is the case of tourism, where crowdsourcing platforms rely on tourist and business inputs to provide tailored recommendations to future tourists in real time. The continuous, open and non-curated nature of the crowd-originated data requires robust data stream mining techniques for on-line profiling, recommendation and evaluation. The sought techniques need, not only, to continuously improve profiles and learn models, but also be transparent, overcome biases, prioritise preferences, and master huge data volumes; all in real time. This article surveys the state-of-art in this field, and identifies future research opportunities.Springer2021-04-29T14:43:16Z2021-04-292021-04-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfLeal F., Veloso B., Malheiro B.,& Burguillo J.C. (2021). Crowdsourced Data Stream Mining for Tourism Recommendation. In: Rocha Á., Adeli H., Dzemyda G., Moreira F., & Ramalho Correia A.M. (eds) Trends and Applications in Information Systems and Technologies, WorldCIST 2021. Advances in Intelligent Systems and Computing (1365, pp. 160-169). Doi:10.1007/978-3-030-72657-7_25. Disponível no Repositório UPT, http://hdl.handle.net/11328/3502http://hdl.handle.net/11328/3502Leal F., Veloso B., Malheiro B.,& Burguillo J.C. (2021). Crowdsourced Data Stream Mining for Tourism Recommendation. In: Rocha Á., Adeli H., Dzemyda G., Moreira F., & Ramalho Correia A.M. (eds) Trends and Applications in Information Systems and Technologies, WorldCIST 2021. Advances in Intelligent Systems and Computing (1365, pp. 160-169). Doi:10.1007/978-3-030-72657-7_25. Disponível no Repositório UPT, http://hdl.handle.net/11328/3502http://hdl.handle.net/11328/3502https://doi.org/10.1007/978-3-030-72657-7_25eng978-3-030-72657-7https://link.springer.com/chapter/10.1007/978-3-030-72657-7_25#citeashttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessVeloso, BrunoMalheiro, BeneditaBurguillo, Juan C.Leal, Fátimareponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-09T02:14:49Zoai:repositorio.upt.pt:11328/3502Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:32:50.769979Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Crowdsourced data stream mining for tourism recommendation |
title |
Crowdsourced data stream mining for tourism recommendation |
spellingShingle |
Crowdsourced data stream mining for tourism recommendation Veloso, Bruno Crowdsourced data streams Data stream mining Profiling Recommendation Tourism |
title_short |
Crowdsourced data stream mining for tourism recommendation |
title_full |
Crowdsourced data stream mining for tourism recommendation |
title_fullStr |
Crowdsourced data stream mining for tourism recommendation |
title_full_unstemmed |
Crowdsourced data stream mining for tourism recommendation |
title_sort |
Crowdsourced data stream mining for tourism recommendation |
author |
Veloso, Bruno |
author_facet |
Veloso, Bruno Malheiro, Benedita Burguillo, Juan C. Leal, Fátima |
author_role |
author |
author2 |
Malheiro, Benedita Burguillo, Juan C. Leal, Fátima |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Veloso, Bruno Malheiro, Benedita Burguillo, Juan C. Leal, Fátima |
dc.subject.por.fl_str_mv |
Crowdsourced data streams Data stream mining Profiling Recommendation Tourism |
topic |
Crowdsourced data streams Data stream mining Profiling Recommendation Tourism |
description |
Crowdsourced data streams are continuous flows of data generated at high rate by users, also known as the crowd. These data streams are popular and extremely valuable in several domains. This is the case of tourism, where crowdsourcing platforms rely on tourist and business inputs to provide tailored recommendations to future tourists in real time. The continuous, open and non-curated nature of the crowd-originated data requires robust data stream mining techniques for on-line profiling, recommendation and evaluation. The sought techniques need, not only, to continuously improve profiles and learn models, but also be transparent, overcome biases, prioritise preferences, and master huge data volumes; all in real time. This article surveys the state-of-art in this field, and identifies future research opportunities. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-04-29T14:43:16Z 2021-04-29 2021-04-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Leal F., Veloso B., Malheiro B.,& Burguillo J.C. (2021). Crowdsourced Data Stream Mining for Tourism Recommendation. In: Rocha Á., Adeli H., Dzemyda G., Moreira F., & Ramalho Correia A.M. (eds) Trends and Applications in Information Systems and Technologies, WorldCIST 2021. Advances in Intelligent Systems and Computing (1365, pp. 160-169). Doi:10.1007/978-3-030-72657-7_25. Disponível no Repositório UPT, http://hdl.handle.net/11328/3502 http://hdl.handle.net/11328/3502 Leal F., Veloso B., Malheiro B.,& Burguillo J.C. (2021). Crowdsourced Data Stream Mining for Tourism Recommendation. In: Rocha Á., Adeli H., Dzemyda G., Moreira F., & Ramalho Correia A.M. (eds) Trends and Applications in Information Systems and Technologies, WorldCIST 2021. Advances in Intelligent Systems and Computing (1365, pp. 160-169). Doi:10.1007/978-3-030-72657-7_25. Disponível no Repositório UPT, http://hdl.handle.net/11328/3502 http://hdl.handle.net/11328/3502 https://doi.org/10.1007/978-3-030-72657-7_25 |
identifier_str_mv |
Leal F., Veloso B., Malheiro B.,& Burguillo J.C. (2021). Crowdsourced Data Stream Mining for Tourism Recommendation. In: Rocha Á., Adeli H., Dzemyda G., Moreira F., & Ramalho Correia A.M. (eds) Trends and Applications in Information Systems and Technologies, WorldCIST 2021. Advances in Intelligent Systems and Computing (1365, pp. 160-169). Doi:10.1007/978-3-030-72657-7_25. Disponível no Repositório UPT, http://hdl.handle.net/11328/3502 |
url |
http://hdl.handle.net/11328/3502 https://doi.org/10.1007/978-3-030-72657-7_25 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
978-3-030-72657-7 https://link.springer.com/chapter/10.1007/978-3-030-72657-7_25#citeas |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833598164990427136 |