Anosov diffeomorphisms and tilings
Main Author: | |
---|---|
Publication Date: | 2015 |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10198/17426 |
Summary: | We consider a toral Anosov automorphism G : T → T given by G(x, y) = (ax + y; x), where a > 1 is a fixed integer, and introduce the notion of γ-tiling to prove the existence of a one-to-one correspondence between (i) smooth conjugacy classes of Anosov diffeomorphisms with invariant measure absolutely continuous with respect to the Lebesgue measure and topologically conjugate to G, (ii) affine classes of - tilings and (iii) solenoid functions. Solenoid functions provide a parametrization of the infinite dimensional space of the mathematical objects described in these equivalences. This talk is based on a joint work with Alberto Pinto |
id |
RCAP_07c6e6d26ab8869c16bdb85cc6d23e78 |
---|---|
oai_identifier_str |
oai:bibliotecadigital.ipb.pt:10198/17426 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Anosov diffeomorphisms and tilingsDynamical systemsAnosov diffeomorphismsTilingsWe consider a toral Anosov automorphism G : T → T given by G(x, y) = (ax + y; x), where a > 1 is a fixed integer, and introduce the notion of γ-tiling to prove the existence of a one-to-one correspondence between (i) smooth conjugacy classes of Anosov diffeomorphisms with invariant measure absolutely continuous with respect to the Lebesgue measure and topologically conjugate to G, (ii) affine classes of - tilings and (iii) solenoid functions. Solenoid functions provide a parametrization of the infinite dimensional space of the mathematical objects described in these equivalences. This talk is based on a joint work with Alberto PintoBiblioteca Digital do IPBAlmeida, João P.2018-04-30T09:47:00Z20152015-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10198/17426engAlmeida, João P. (2015). Anosov diffeomorphisms and tilings. In International Workshop Progress on Difference Equations. Universidade da Beira Interior, Covilhãinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T12:07:32Zoai:bibliotecadigital.ipb.pt:10198/17426Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:34:19.018743Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Anosov diffeomorphisms and tilings |
title |
Anosov diffeomorphisms and tilings |
spellingShingle |
Anosov diffeomorphisms and tilings Almeida, João P. Dynamical systems Anosov diffeomorphisms Tilings |
title_short |
Anosov diffeomorphisms and tilings |
title_full |
Anosov diffeomorphisms and tilings |
title_fullStr |
Anosov diffeomorphisms and tilings |
title_full_unstemmed |
Anosov diffeomorphisms and tilings |
title_sort |
Anosov diffeomorphisms and tilings |
author |
Almeida, João P. |
author_facet |
Almeida, João P. |
author_role |
author |
dc.contributor.none.fl_str_mv |
Biblioteca Digital do IPB |
dc.contributor.author.fl_str_mv |
Almeida, João P. |
dc.subject.por.fl_str_mv |
Dynamical systems Anosov diffeomorphisms Tilings |
topic |
Dynamical systems Anosov diffeomorphisms Tilings |
description |
We consider a toral Anosov automorphism G : T → T given by G(x, y) = (ax + y; x), where a > 1 is a fixed integer, and introduce the notion of γ-tiling to prove the existence of a one-to-one correspondence between (i) smooth conjugacy classes of Anosov diffeomorphisms with invariant measure absolutely continuous with respect to the Lebesgue measure and topologically conjugate to G, (ii) affine classes of - tilings and (iii) solenoid functions. Solenoid functions provide a parametrization of the infinite dimensional space of the mathematical objects described in these equivalences. This talk is based on a joint work with Alberto Pinto |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 2015-01-01T00:00:00Z 2018-04-30T09:47:00Z |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10198/17426 |
url |
http://hdl.handle.net/10198/17426 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Almeida, João P. (2015). Anosov diffeomorphisms and tilings. In International Workshop Progress on Difference Equations. Universidade da Beira Interior, Covilhã |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833592029872914432 |