Redes neurais convolucionais semi-supervisionadas aplicadas a mudança de domínio.
Ano de defesa: | 2022 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | , , |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Tecnológica Federal do Paraná
Cornelio Procopio |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Informática
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: | |
Área do conhecimento CNPq: | |
Link de acesso: | http://repositorio.utfpr.edu.br/jspui/handle/1/30599 |
Resumo: | Dentre as muitas dificuldades observadas dentro de áreas afins da inteligência computacional, algumas se sobressaem devido a sua similaridade de ocorrência na grande maioria dos casos. Dentro desta área, e em específico dentro do processo de treinamentos de algoritmos de aprendizagem de maquina, um empecilho recorrente e a obtenção de amostras suficientes para realizar o treinamento dos algoritmos, bem como o gasto temporal e custoso de rotulação manual de amostras. Assim, com o intuito de mitigar tal problema, se propõe o uso de técnicas de aprendizado de máquina semi-supervisionado aplicado ao contexto de mudança de domínios em imagens atrelado a redes neurais convolucionais. Para tanto, foram realizados experimentos utilizando duas abordagens semi-supervisionadas (Self-Training e Co-Training) em conjunto redes neurais por convolução. Além disso, os experimentos foram realizados em 3 conjuntos de imagens públicos. Em suma, as contribuições do presente trabalho se apresentam como o desenvolvimento de diferentes arquiteturas de aprendizagem de maquina Semi- Supervisionada, a aplicação de Fine-Tuning e classificação de bases sobre diferentes domínios os ganhos computacionais provenientes da utilização das técnicas Semi-Supervisionadas, as aplicabilidades do processo de Transfer Learning dentro da Aprendizagem de Maquina e por fim, os resultados obtidos das métricas de avaliação aplicadas sobre os diferentes datasets utilizados. |