Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Becker, Willian Eduardo
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Orientador(a): |
Barros, Rodrigo Coelho
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação
|
Departamento: |
Escola Politécnica
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tede2.pucrs.br/tede2/handle/tede/8269
|
Resumo: |
Nowadays, the use of social media has become a daily activity of our society. The huge and uninterrupt flow of information in these spaces opens up the possibility of exploring this data in different ways. Sentiment Analysis (SA) is a task that aims to obtain knowledge about the polarity of a given text relying on several techniques of Natural Language Processing, with most of solutions dealing with only one language at a time. However, approaches that are not restricted to explore only one language are more related to extract the whole knowledge and possibilities of these data. Recent approaches based on Machine Learning propose to solve SA by using mainly Deep Learning Neural Networks have obtained good results in this task. In this work is proposed three Convolutional Neural Network architectures that deal with multilingual Twitter data of four languages. The first and second proposed models are characterized by the fact they require substantially less learnable parameters than other considered baselines while are more accurate than several other Deep Neural architectures. The third proposed model is able to perform a multitask classification by identifying the polarity of a given sentences and also its language. This model reaches an accuracy of 74.43% for SA and 98.40% for Language Identification in the four-language multilingual dataset. Results confirm that proposed model is the best choice for both sentiment and language classification by outperforming the considered baselines. |