Uma metodologia para o aprendizado semi-supervisionado de classificadores Bayesianos.

Detalhes bibliográficos
Ano de defesa: 2005
Autor(a) principal: Cirelo, Marcelo Cesar
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/3/3132/tde-10112023-095922/
Resumo: Neste trabalho são apresentados métodos para aprendizado de classificadores Bayesianos a partir de bases de dados contendo dados rotulados e não-rotulados (aprendizado semi-supervisionado). O trabalho apresenta dois novos algoritmos, SSS e CBL-EM, e compara estes algoritmos com versões de classificadores Naive Bayes, Tree-Augmented Naive Bayes e Structural-EM. As principais contribuições foram o desenvolvimento de um método para utilizar o algoritmo CBL1 em conjunto com o algoritmo EM (do inglês Expectation-Maximization) e a definição de uma metodologia para o aprendizado semi-supervisionado de classificadores Bayesianos. Os resultados empíricos mostram que os algoritmos propostos tem desempenho superior aos algoritmos existentes para aprendizado com dados rotulados e não-rotulados.