Estudo dos genótipos de café arábica utilizando FTIR e redes neurais artificiais

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Link, Jade Varaschim
Orientador(a): Bona, Evandro
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Campo Mourao
Medianeira
Programa de Pós-Graduação: Programa de Pós-Graduação em Tecnologia de Alimentos
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/504
Resumo: As condições climáticas específicas de cada região de cultivo do café fornecem atributos especiais para a bebida e podem assim aumentar seu valor agregado. No entanto, é essencial provar a origem geográfica e genotípica do cultivar por meio de métodos confiáveis. Vários métodos matemáticos e estatísticos foram desenvolvidos na tentativa de reproduzir a capacidade humana de reconhecimento de padrões. As redes neurais artificiais (RNAs) são um conjunto de técnicas baseadas em princípios matemáticos e estatísticos, que vem atualmente ganhando espaço para realizar tarefas de regressão e reconhecimento de padrões. As RNAs são técnicas capazes de realizar o mapeamento de relações complexas e não lineares entre múltiplas variáveis de entrada e saída. Neste trabalho foram utilizados três tipos de rede neural artificial, o mapa auto-organizável (aprendizagem não-supervisionada), o perceptron de múltiplas camadas (aprendizagem supervisionada) e a rede de base radial (processo de aprendizagem híbrido), para o reconhecimento e classificação geográfica e genotípica de café arábica. Para esse fim a composição química e os espectros obtidos no equipamento de espectroscopia no infravermelho com transformada de Fourier (FTIR) foram analisados através do emprego de diferentes RNAs. No desenvolvimento das redes, foram aplicadas metodologias para: melhor generalização das redes (média de ensemble) e escolha dos parâmetros de rede (otimização simplex sequencial). O mapa auto-organizável apresentou foi capaz de reconhecer os genótipos de café e a sua origem geográfica, utilizando os dados do perfil químico das amostras. Após os resultados obtidos foi possível concluir que os perceptrons de múltiplas camadas otimizados foram capazes de classificar as amostras de café arábica geograficamente. Entretanto, para a classificação genotípica o desempenho não foi totalmente satisfatório. As redes de função de base radial otimizadas apresentaram resultados mais satisfatórios pois foram capazes de classificar as amostras de café arábica geograficamente e genotipicamente. Além dos melhores resultados obtidos para a classificação genotípica, as redes de função de base radial apresentam um número menor de parâmetros livres quando comparada com os perceptrons de múltiplas camadas, que apresentam um número muito elevado de pesos sinápticos, não proporcionando número suficiente de graus de liberdade para que a rede neural possa aprender de maneira confiável.