Quantificação da incerteza do modelo randômico de McEvily via metodologia fast crack bounds - Monte Carlo

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Oliveira, Gracielle Lima de lattes
Orientador(a): Silva Júnior, Claudio Roberto Ávila da lattes
Banca de defesa: Silva Júnior, Claudio Roberto Ávila da lattes, Deus, Hilbeth Parente Azikri de lattes, Silva Neto, João Morais da lattes, Almeida, Julio Cezar de lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Mecânica e de Materiais
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/4897
Resumo: A mecânica da fratura estuda o comportamento das trincas visando compreender e prever a sua propagação até a fratura, com a finalidade de evitar acidentes catastróficos, pois, cerca de 80% das falhas nas indústrias ocorrem devido a fadiga que é originada por trincas. Em geral as previsões realizadas baseiam-se em modelos de referência e matemáticos. A alta complexidade dos problemas de análise de estruturas tem estimulado os engenheiros a recorrerem a métodos numéricos tais como métodos de elementos finitos, diferenças finitas ou elementos de contorno para quantificar a incerteza, visto que normalmente na prática algumas variáveis e condições do problema analisado são desconhecidas. O objetivo deste trabalho é quantificar a incerteza da propagação de trinca no modelo de McEvily via metodologia Fast Crack Bounds (FCB) proposta por Avila et al. (2016). A quantificação da incerteza consiste em obter cotas para os estimadores dos momentos estatísticos do processo estocástico “Tamanho de Trinca” usando o método FCB e simulação de Monte Carlo conjuntamente. O método FCB incide em obter cotas (funções) inferior e superior para a função tamanho de trinca, essas cotas “envelopam” a solução numérica de RungeKutta de ordem 4. As cotas são obtidas por majorações adequadas a partir do Problema de Valor Inicial (PVI) de propagação de trinca de McEvily, por meio da série de Taylor retendo o termo de segunda ordem com resto de Lagrange. Após formular matematicamente as cotas, utiliza-se o software MATLAB na execução dos algoritmos implementados para quantificar a incerteza. Os resultados gerados no MATLAB são as estimativas do primeiro e segundo momento estatístico, bem como os seus desvios e os tempos computacionais entre as cotas e a solução numérica RK4. Estes resultados teóricos são posteriormente apresentados e analisados em forma de tabelas e gráficos.