Quantificação da incerteza do modelo randômico de McEvily via metodologia fast crack bounds - Monte Carlo
Ano de defesa: | 2019 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | , , , |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Tecnológica Federal do Paraná
Curitiba |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Mecânica e de Materiais
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: | |
Área do conhecimento CNPq: | |
Link de acesso: | http://repositorio.utfpr.edu.br/jspui/handle/1/4897 |
Resumo: | A mecânica da fratura estuda o comportamento das trincas visando compreender e prever a sua propagação até a fratura, com a finalidade de evitar acidentes catastróficos, pois, cerca de 80% das falhas nas indústrias ocorrem devido a fadiga que é originada por trincas. Em geral as previsões realizadas baseiam-se em modelos de referência e matemáticos. A alta complexidade dos problemas de análise de estruturas tem estimulado os engenheiros a recorrerem a métodos numéricos tais como métodos de elementos finitos, diferenças finitas ou elementos de contorno para quantificar a incerteza, visto que normalmente na prática algumas variáveis e condições do problema analisado são desconhecidas. O objetivo deste trabalho é quantificar a incerteza da propagação de trinca no modelo de McEvily via metodologia Fast Crack Bounds (FCB) proposta por Avila et al. (2016). A quantificação da incerteza consiste em obter cotas para os estimadores dos momentos estatísticos do processo estocástico “Tamanho de Trinca” usando o método FCB e simulação de Monte Carlo conjuntamente. O método FCB incide em obter cotas (funções) inferior e superior para a função tamanho de trinca, essas cotas “envelopam” a solução numérica de RungeKutta de ordem 4. As cotas são obtidas por majorações adequadas a partir do Problema de Valor Inicial (PVI) de propagação de trinca de McEvily, por meio da série de Taylor retendo o termo de segunda ordem com resto de Lagrange. Após formular matematicamente as cotas, utiliza-se o software MATLAB na execução dos algoritmos implementados para quantificar a incerteza. Os resultados gerados no MATLAB são as estimativas do primeiro e segundo momento estatístico, bem como os seus desvios e os tempos computacionais entre as cotas e a solução numérica RK4. Estes resultados teóricos são posteriormente apresentados e analisados em forma de tabelas e gráficos. |