Quantificação da incerteza do modelo de proddle via metodologia fast crack bounds

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Bezerra, Thiago Castro lattes
Orientador(a): Silva Júnior, Claudio Roberto Ávila da lattes
Banca de defesa: Silva Júnior, Claudio Roberto Ávila da, Nascimento, Eduardo Mauro do, Silva Neto, João Morais da
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Mecânica e de Materiais
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/2794
Resumo: O estudo de um componente estrutural, é mais realístico quando se admite que o componente já possua trincas. A área que estuda este fenômeno é a mecânica da fratura. O componente que possui trinca e é submetido a esforços cíclicos, tende a falhar por fadiga. Este estudo apresenta cotas que “envelopam” a solução numérica aproximada da evolução da trinca. São estimados momentos estatísticos das cotas superior e inferior, afim de se obter resultados mais realísticos com relação a propagação da trinca, visto a existência de incerteza sobre os parâmetros dos modelos de evolução da trinca. As cotas são determinadas via metodologia Fast Crack Bounds, sendo está comparada com a solução numérica aproximada obtida pelo método de Runge-Kutta de quarta ordem. A randomização dos parâmetros do modelo, é executada através de Simulação de Monte Carlo. Para a quantificação da incerteza, da cota superior, inferior e da solução numérica, são considerados exemplos “clássicos” da mecânica da fratura, onde a função de correção do fator de intensidade de tensão é conhecida: placa com largura infinita, placa com largura finita e trinca central e placa com largura finita e trinca na aresta. O trabalho apresenta os desvios relativos do primeiro e segundo momento estatístico, bem como os ganhos computacionais na resolução do problema de valor inicial que descrevem a propagação da trinca. Em todos os casos analisados, a metodologia Fast Crack Bounds apresentou menor tempo computacional, quando comparada à solução numérica do problema, sendo no mínimo 411,23% mais eficaz para o parâmetro a0 , até 8.296,29% para o parâmetro KC .