A derivada segundo Silvanus Thompson
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | , , |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Tecnológica Federal do Paraná
Curitiba |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Matemática em Rede Nacional
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: | |
Área do conhecimento CNPq: | |
Link de acesso: | http://repositorio.utfpr.edu.br/jspui/handle/1/4189 |
Resumo: | Este trabalho tem por finalidade mostrar uma possibilidade de abordagem das derivadas para estudantes do Ensino Médio, utilizando um relato histórico de como desenvolveu-se o estudo do Cálculo, mais especificamente, da derivada ao longo do tempo, bem como problemas motivadores que impulsionaram tal conteúdo. São apresentadas definições que envolvem derivadas com aplicações, seja no processo geométrico-algébrico, como no caso da reta tangente, ou ainda, no campo da Física, através da velocidade e aceleração, todos associados ao conceito de taxa de variação. Ao definir a empregabilidade da derivada, se faz um elo entre a derivada e sua aplicação com conteúdos do Ensino Médio, no qual podem ser explorados tópicos relativos ao estudo de funções como: crescimento e decrescimento, pontos de máximo e mínimo, e também, investigar por intermédio da análise visual, parâmetros pertinentes à função. Analisado, também a maneira como Silvanus Thompson desenvolvia o raciocínio da resolução de algumas derivadas, tais como as de polinômios, seno, cosseno e tangente, sendo que esse estudo diferencia-se da maneira tradicional para obter a derivada uma vez que não emprega o uso de limites para sua obtenção. Finalmente, apresenta-se demonstrações efetuadas por Silvanus Thompson de como diferenciar soma, produto, quociente e a regra da cadeia. Aponta-se no Projeto Gutemberg, de domínio público, o livro Calculus Made Easy. |