Detecção de falhas em rolamentos de motores de indução trifásicos baseada em máquina de vetores de suporte e redes de Bragg em fibra óptica

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Brusamarello, Beatriz lattes
Orientador(a): Guarneri, Giovanni Alfredo lattes
Banca de defesa: Leal Junior, Arnaldo Gomes lattes, Casanova, Dalcimar lattes, Guarneri, Giovanni Alfredo lattes, Dreyer, Uilian José lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Pato Branco
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/28144
Resumo: Devido a robustez e ótima relação custo-benefício, o motor de indução o tornou-se a máquina elétrica mais difundida atualmente. Mas, como qualquer outro equipamento, e vulnerável a falhas, sendo as falhas em rolamentos as mais comuns nos motores de indução. Este trabalho apresenta um sistema supervisionado de detecção e diagnóstico de falhas na pista externa do rolamento fundamentado em máquina de vetores de suporte (Support Vector Machine, SVM) e em sinais da deformação dinâmica do motor, coletados por um sensor baseado em redes de Bragg em fibra óptica (Fiber Bragg Grating, FBG) instalado na tampa do motor. Foram considerados três graus de severidade diferentes para falhas na pista externa: falha em estágio inicial, falha intermediária e falha grave. Os ensaios foram realizados no motor operando a vazio, com 47 frequências de alimentação o diferentes. Também foram realizados ensaios do motor com carga com o rolamento apresentando falha em estágio inicial, com frequência de alimentação de 60 Hz. Os sinais medidos foram tratados no domínio da frequência usando a Transformada Rápida de Fourier e a densidade espectral de potência. O classificador SVM foi treinado com dois conjuntos de dados diferentes, resultantes de duas técnicas de redução de dimensionalidade via extração de características: a seleção o dos quatro maiores picos dos espectros de frequência e a análise de componentes principais (Principal Component Analysis, PCA). A otimização e definição dos parâmetros da SVM foram feitas utilizando as técnicas grid-search e k-fold cross-validation. Para os ensaios do motor a vazio, os resultados dos classificadores SVM mostram que conjunto de características formado pela PCA apresentou uma taxa de acerto superior ao conjunto de características constituído pelos quatro maiores picos dos espectros de frequência, com valores de 99,82% e 99,73%, respectivamente. Tal fato se repetiu para os classificadores SVM treinados com os conjuntos de dados que continham os ensaios realizados no motor com carga, a redução de dimensionalidade via PCA apresentou uma precisão maior que o conjunto de dados formado pelos quatro maiores picos dos espectros de frequência, 99,31% e 92,27%, respectivamente. A partir da metodologia apresentada neste trabalho foi possível validar a utilização da FBG para detecção de falhas em rolamentos, visto que, independentemente do grau de severidade da falha testada a FBG possui sensibilidade o suficiente para detectar todas as condições de falha na pista externa do rolamento.