Identificação e quantificação automática de taxa de glomérulos hialinizados utilizando deep learning

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Costa, Thalita Munique lattes
Orientador(a): Schneider, Fabio Kurt lattes
Banca de defesa: Schneider, Fabio Kurt lattes, Paula Filho, Pedro Luiz de lattes, Ioshii, Sergio Ossamu lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/28827
Resumo: Em Patologia Digital, lâminas histológicas são digitalizadas para posterior análise. Lâminas digitalizadas permitem o uso de técnicas de inteligência artificial e processamento de imagens para identificação e quantificação automática em histopatologia permitindo a quantificação da taxa de glomérulos hialinizados. Neste trabalho, uma base de dados com imagens de vários centros de estudos de patologia renal é utilizada e o uso de Deep Learning, especificamente a arquitetura YOLOV3, é avaliado na detecção automática de glomérulos. Além da avaliação de glomérulos funcionais, há também a necessidade de se identificar a presença e a porcentagem de glomérulos hialinizados (i.e., glomérulos que se tornaram não funcionais decorrente da substituição de todos os elementos histopatológicos por material proteico hialino), quando considerada a totalidade de glomérulos existentes. Utilizando a base de dados Bio Atlas (Pennsylvania State University), 16 lâminas completas resultando em 1177 imagens de 1024x1024 pixels com um ou mais glomérulos foram usadas para o treinamento e validação. Foram anotados 468 glomérulos hialinizados e 1261 glomérulos não hialinizados. Utilizando a rede neural convolucional de 53 camadas e imagens de entrada ajustadas para 512x512 pixels, este trabalho obteve uma sensibilidade de 90%, precisão de 96,9%, acurácia de 87,5% e um F1 score de 93,3% considerando os dois tipos de glomérulos. Criou-se um sistema capaz de identificar glomérulos funcionais e hialinizados permitindo suporte ao estudo histopatológico de doenças renais e facilitando a localização dos objetos de análise.