Análise de histopatologia renal usando deep learning
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | , , |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Tecnológica Federal do Paraná
Curitiba |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: | |
Área do conhecimento CNPq: | |
Link de acesso: | http://repositorio.utfpr.edu.br/jspui/handle/1/27820 |
Resumo: | Neste trabalho utilizamos redes neurais convolucionais e aprendizagem profunda para detectar objetos de interesse biomédico (i.e., glomérulos) em lâminas inteiras digitalizadas de estudos de patologia renal. A análise de glomérulos é importante para estudos de nefropatias causadas por diabetes, lúpus, uso de drogas, excesso de fármacos, entre outras causas. A digitalização de lâminas inteiras permite a aplicação de uma variedade de técnicas de processamento digital de imagem e uso de inteligência artificial para auxiliar os médicos em diagnósticos. Efetuamos o treinamento de uma rede neural convolucional YOLOv3 de arquitetura com 53 camadas. O treinamento e análise de desempenho da rede contou com 6 experimentos. O conjunto de dados de treinamento, continha um total de 16 lâminas inteiras, divididas em subimagens de 2048x2048, que resultaram em um total de 815 imagens, contendo um total de 2325 glomérulos anotados, para o treinamento, validação e avaliação de desempenho. Para a análise de desempenho da rede treinada (i.e., detecção), foram selecionadas 7 lâ- minas desconhecidas da rede. Com base no resultado encontrado, é possível afirmar que o resultado deste trabalho é superior aos encontrados na literatura. Acurácia, Precisão, Sensibilidade, Especificidade e F1s de 99,40%, 97,31%, 96,17%, 99,73% e 94,24%, respectivamente, foram obtidas neste trabalho mostrando o potencial para auxiliar nos diagnósticos de exames histopatológicos. |