Análise de histopatologia renal usando deep learning

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Barbosa, Lourenço Madruga lattes
Orientador(a): Schneider, Fabio Kurt lattes
Banca de defesa: Casanova, Dalcimar lattes, Schneider, Fabio Kurt lattes, Prado, Karin Braun lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/27820
Resumo: Neste trabalho utilizamos redes neurais convolucionais e aprendizagem profunda para detectar objetos de interesse biomédico (i.e., glomérulos) em lâminas inteiras digitalizadas de estudos de patologia renal. A análise de glomérulos é importante para estudos de nefropatias causadas por diabetes, lúpus, uso de drogas, excesso de fármacos, entre outras causas. A digitalização de lâminas inteiras permite a aplicação de uma variedade de técnicas de processamento digital de imagem e uso de inteligência artificial para auxiliar os médicos em diagnósticos. Efetuamos o treinamento de uma rede neural convolucional YOLOv3 de arquitetura com 53 camadas. O treinamento e análise de desempenho da rede contou com 6 experimentos. O conjunto de dados de treinamento, continha um total de 16 lâminas inteiras, divididas em subimagens de 2048x2048, que resultaram em um total de 815 imagens, contendo um total de 2325 glomérulos anotados, para o treinamento, validação e avaliação de desempenho. Para a análise de desempenho da rede treinada (i.e., detecção), foram selecionadas 7 lâ- minas desconhecidas da rede. Com base no resultado encontrado, é possível afirmar que o resultado deste trabalho é superior aos encontrados na literatura. Acurácia, Precisão, Sensibilidade, Especificidade e F1s de 99,40%, 97,31%, 96,17%, 99,73% e 94,24%, respectivamente, foram obtidas neste trabalho mostrando o potencial para auxiliar nos diagnósticos de exames histopatológicos.