Classificação de sinais eletromiográficos do músculo masseter de bovinos baseada em dicionários para reconhecimento de padrões ingestivos

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Campos, Daniel Prado de lattes
Orientador(a): Abatti, Paulo José lattes
Banca de defesa: Britto Jr, Alceu de Souza lattes, Lazzaretti, André Eugênio lattes, Setti, João Antônio Palma lattes, Vale, Marcos Martinez do lattes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/4637
Resumo: Esse trabalho apresenta uma proposta de um novo método de reconhecimento de padrões em sinais de eletromiografia de superfície do músculo masseter de vacas leiteiras para classificação de padrões de ingestão e ruminação, bem como a definição de uma metodologia de segmentação desse sinal. O método, chamado de Aprendizado de Dicionário por Discriminante de Fisher (FDDL), é baseado no treinamento de dicionários específicos à classe, o qual é constituído de uma matriz composta de protótipos de sinais. Os dicionários definem um vetor esparso que codifica o sinal com a finalidade de reconstrução. As informações de erro de reconstrução para cada dicionário são usadas como métricas para classificação, dessa forma dispensando etapas de extração de característica. Resultados em bovinos com 2000 exemplos de mastigação e validação cruzada mostraram uma classificação com desempenho significativamente superior (p < 0,05) em relação aos métodos presentes na literatura, apresentando taxa de acerto média de 90%. O método se demonstrou robusto à presença de ruídos, com ganho na taxa de acerto de 2,45% com adição de ruídos severos (0 dB) no treino e no teste e 14,75% com adição apenas no teste, sendo superior à todos os métodos na faixa de 0-20 dB. A continuação do trabalho deve avaliar a capacidade de implementação do método em tempo-real e expandir a classificação para outros padrões ingestivos, como identificação da altura de pasto.