Algoritmo de evolução diferencial paralelo aplicado ao problema da predição da estrutura de proteínas utilizando o modelo AB em 2D e 3D

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Kalegari, Diego Humberto
Orientador(a): Lopes, Heitor Silvério
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/1043
Resumo: O problema da predição da estrutura de proteínas (PPEP) é bastante conhecido na bioinformática. A identificação da conformação nativa de uma proteína permite predizer a sua função no organismo. Este conhecimento também é útil no desenvolvimento de novos fármacos ou na compreensão do mecanismo de várias doenças. Várias técnicas tem sido propostas para resolver este problema. Porém, o alto custo envolvido levou ao surgimento de vários modelos que simplificam, em parte, as estruturas protéicas. No entanto, mesmo com os modelos mais simplificados, a complexidade do problema traz inúmeros desafios computacionais na busca da sua conformação nativa. Este trabalho utiliza o algoritmo evolucionário denominado Evolução Diferenciada (ED) para solucionar o PPEP, representando as proteínas com o modelo AB (toy model), em duas e três dimensões (2D e 3D). O trabalho apresenta a implementação de duas versões da ED, paralelizadas num ambiente de processo em cluster, com Message Passing Interface e arquitetura mestre-escravo. Para a configuração dos operadores do algoritmo de ED, foram realizados vários estudos com diferentes configurações para ambos os modelos, e análises estatísticas determinaram quais os melhores valores. Além disso, foram criados dois operadores especiais: dizimação e mutação espelhada. O primeiro poder ser considerado um operador genérico, que pode ser utilizado em qualquer problema; o segundo é específico para o problema em questão. Além do algoritmo de ED básico, também foi proposta uma versão auto-adaptável, em que alguns de seus parâmetros são atualizados no decorrer da evolução. Os experimentos realizados utilizaram 4 sequências de aminoácidos de benchmark geradas a partir da sequência de Fibonacci, contendo entre 13 e 55 aminoácidos. Os resultados dos algoritmos de ED paralelos foram comparados com os resultados obtidos em outros trabalhos. O algoritmo de ED é capaz de obter resultados excelentes, competitivos com os métodos especializados, apesar de não atingir o ótimo conhecido em algumas instâncias. Os resultados promissores obtidos nesse trabalho mostram que o algoritmo de ED é adequado para o problema. Em trabalhos futuros poderão ser estudados novos operadores especiais ou outras técnicas de inspiração biológica, buscando melhorar os resultados.