Algoritmo de evolução diferencial paralelo aplicado ao problema da predição da estrutura de proteínas utilizando o modelo AB em 2D e 3D

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Kalegari, Diego Humberto
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/1043
Resumo: Protein structure prediction is a well-known problem in bioinformactis. Identifying protein native conformation makes it possible to predict its function within the organism. Knowing this also helps in the development of new medicines and in comprehending how some illnesses work and act. During the past year some techniques have been proposed to solve this problem, but its high cost made it necessary to build models that simplify the protein structures. However, even with the simplicity of these models identifying the protein native conformation remains a highly complex, computationally challenging problem. This paper uses an evolutionary algorithm known as Differential Evolution (DE) to solve the protein structure prediction problem. The model used to represent the protein structure is the Toy Model (also known as the AB Model) in both 2D and 3D. This work implements two versions of the ED algorithm using a parallel architecture (master-slave) based on Message Passing interface in a cluster. A large number of tests were executed to define the final configuration of the DE operators for both models. A new set of special operators were developed: explosion and mirror mutation. We can consider the first as generic, because it can be used in any problem. The second one is more specific because it requires previous knowledge of the problem. Of the two DE algorithm implemented, one is a basic DE algorithm and the second is a self-adaptive DE. All tests executed in this work used four benchmark amino acid sequences generated from the Fibonacci sequence. Each sequence has 13 to 55 amino acids. The results for both parallel DE algorithms using both 2D and 3D models were compared with other works. The DE algorithm achieved excellent results. It did not achieve the optimal known values for some sequences, but it was competitive with other specialized methods. Overall results encourage further research toward the use of knowledge-based operators and biologically inspired techniques to improve DE algorithm performance.