Computação evolucionária para indução de regras de autômatos celulares multidimensionais

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Weinert, Wagner Rodrigo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/104
Resumo: A cellular automata is a discrete dynamic system that evolves thought interactions of rules and can be applied to solve several complex problems. The task to find the transition rule to solve a problem can be generalized as a problem of rule induction for cellular automata. Several approaches, based on evolutionary computation techniques, have been proposed to solve this problem. However, there is no generic methodology capable of being applied to a large range of problems. The main contribution of this work is a generic methodology for rule induction for cellular automata. This research was done in four steps to achieve this objective. In the first step we evaluated the performance of some dynamic behavior forecasting parameters calculated as function of a transition rule. The obtained results indicated that those parameters can be used in a careful way. This is due to the possibility of obtaining valid, but insatisfactory solutions. We stress the importance of considering reference parameters, which for the majority of real problems, are not available. In the second research step we proposed a new method to forecast the dynamic behavior. This method considers the transition rule and the initial configuration of the cellular automata. We used the qualitative dynamic behavior patterns described by Wolfram as reference to the forecast. This method was efficient for null behavior rules. Since the process of dynamic simulation can have a high computational cost, we developed a third methodology: an architecture based on the concept of hardware/software co-design to accelerate the processing time. This architecture implements the evolution of cellular automata using reconfigurable logic and was able to decrease hundreds of times the processing time. In the fourth step we developed a new parallel architecture based on the master-slave paradigm. In this paradigm, the master process implements the evolutionary algorithm and a set of slaves processes divide the task of validating the obtained rules. The system runs in a cluster with 120 processing cores connected by a local area network. The co-evolutionary strategy based on an insular model allowed the search for high quality solutions. The generic system implemented over a parallel environment was able to solve the problems proposed. A task distribution analyses among several processors emphasized the benefits of parallel processing. The experiments also indicated a set of reference parameters that can be used to configure the system. The contributions of this work were theoretical and methodological. The former refers to the evaluations done and the different methods for dynamic behavior forecasting parameters. The latter is about the development of two architectures for processing.