Abordagem baseada em algoritmos meméticos para descoberta de motivos biológicos

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Garbelini, Jader Maikol Caldonazzo lattes
Orientador(a): Sanches, Danilo Sipoli lattes
Banca de defesa: Sanches, Danilo Sipoli, Vilas-Boas, Laurival Antonio, Tinós, Renato
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Cornelio Procopio
Programa de Pós-Graduação: Programa de Pós-Graduação em Bioinformática
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/3107
Resumo: A localização dos Sítios de Ligação dos Fatores de Transcrição (TFBS, do inglês Transcription Factor Binding Sites) é considerado um dos principais desafios da Bioinformática. A sua correta identificação desempenha um papel importante na compreensão dos mecanismos de regulação gênica e desenvolvimento de novas drogas. A descoberta de motivos de novo é uma tarefa difícil e a construção de programas computacionalmente eficazes é necessária para melhorar a compreensão e o estudo dos transcritos celulares. Isso permite apontar e eleger elementos recorrentes em um conjunto de sequências para posterior investigação biológica, tais como os resultados de experiências de expressão diferencial de elevado desempenho. Neste trabalho apresentamos o Arcabouço Memetico para Descoberta de Motivos (MFMD, do inglês Memetic Framework for Motif Discovery), um algoritmo cuja construção foi inspirada na teoria dos memes e utilizou como base duas heurísticas – uma construtiva semi-gulosa baseada no GRASP e outra baseada no VNS – bem como um otimizador global baseado nos algoritmos evolutivos. Quando avaliado em conjuntos de dados sintéticos e reais, o MFMD superou as principais ferramentas de detecção de motivos existentes. Essa nova abordagem foi comparada à outras técnicas bem conhecidas da literatura e os resultados sugerem uma melhora significativa nas medidas de desempenho alcançadas pelo MFMD em relação aos algoritmos confrontados.