Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Sampaio, Jhames Matos |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45133/tde-05072012-195407/
|
Resumo: |
Processos lineares não capturam a estrutura dos dados em finanças. Há uma variedade muito grande de modelos não lineares disponíveis na literatura. A classe de modelos ARCH (Autoregressive Conditional Heterokedastic) foi introduzida por Engle (1982) com o objetivo de estimar a variância da inflação. A idéia nesta classe é que os retornos sejam não correlacionados serialmente, mas a volatilidade (variância condicional) dependa de retornos passados. A classe de modelos GARCH (Generalized Autoregressive Conditional Heterokedastic) sugerida por Bollerslev (1986, 1987, 1988) pode ser usada para descrever a volatilidade com menos parâmetros que um modelo ARCH. Modelos da classe GARCH são processos estocásticos não lineares, suas distribuições tem cauda pesada com variância condicional dependente do tempo e modelam agrupamento de volatilidade. Apesar da razoável descrição, a forma como os modelos acima foram construídos apresentaram algumas limitações no que se refere ao peso das caudas em suas distribuições não condicionais. Muitos estudos em dados financeiros apontam para caudas com peso considerável. Modelos R-GARCH (Randomized Generalized Autoregressive Conditional Heterokedastic) foram propostos por Nowicka (1998) e incluem os modelos ARCH e GARCH possibilitando o uso de inovações estáveis além da conhecida distribuição normal. Estas permitem captar melhor a propriedade de cauda pesada. Como a função de autocovariância não existe para tais processos introduz-se novas medida de dependência. Métodos de estimação e análises empíricas da classe R-GARCH, assim como de suas medidas de dependência não estão disponíveis na literatura e são o foco deste trabalho. |